用户画像的用户流失标签设计,多人理解得不太对。不是标签越多越细就越有用,关键是能不能业务问题。这篇文章用 Python 跑了个Rosenbrock 函数最小值的例子,把梯度下降和牛顿法讲得挺明白。虽然是数学优化的案例,但你一看就懂标签设计里“滞后性”和“预测性”的差别了,挺有意思的。代码不长,逻辑清晰,看完你会对画像标签有不一样的理解。哦对,后面还讲了性别预测怎么用贝叶斯推断,像“建军”“晓晶”这种名字都考虑进来了,蛮细致。
Python用户画像标签设计梯度下降与牛顿法优化实例
相关推荐
运营商数据标签抽取使用梯度下降和牛顿法优化rosenbrock函数最小化实例
在运营商数据标签抽取领域,计算需求、数据模型、计算策略分析和计算流程等方面的进展日益重要。特别是在用户流失率预测的模型标签计算示例中,设计了朴素贝叶斯算法来解决概率分类问题。
spark
17
2024-07-13
用户画像标签架构
用户画像的标签体系根据业务属性分为多个类别模块,包括人口统计、社会属性、消费画像、行为画像、兴趣画像等。对于特定领域,还会有更细化的标签,如金融领域的风险画像、电商领域的商品偏好等。
spark
15
2024-04-30
用户画像标签体系设计难题:从形式到实用
用户画像的应用困境
用户画像在精准营销、数据应用、用户分析和数据分析等方面具有重要作用,但实际应用中却面临着诸多挑战。
标签体系设计之困:
标签选择与定义: 如何从众多维度中合理选择标签?如何定义用户层级、VIP用户的标准?
维护与监控: 如何维护和监控标签体系?业务变化时如何调整标签?
有效性验证: 如何验证用户画像的有效性?如何判断系统是否成功?
应用场景拓展: 如何将用户画像应用到更多场景?
策略执行之惑:
运营人员背负KPI压力,往往倾向于全量运营而非精细化运营,导致用户画像的价值难以体现。
总结
许多企业在构建用户画像后,发现其应用效果不佳,最终沦为形式主义。用户画像的真正价值在
spark
22
2024-05-12
个性化推荐系统简介Python中使用梯度下降和牛顿法寻找Rosenbrock函数最小值示例
个性化推荐系统在提升用户体验和业务运营效果方面发挥重要作用。推荐的关键在于发现用户的潜在兴趣点。为了实现这一目标,可以采用统计学算法(如按流行度推荐和热度推荐)或者机器学习算法(例如基于内容相似度的推荐和协同过滤推荐算法)。机器学习算法的核心在于计算item之间和user之间的相似度,使用欧几里得算法或余弦相似度算法。此外,Kmeans聚类算法可以用于人群聚类。
spark
17
2024-08-13
梯度下降法 Matlab 程序
实现梯度下降法的 Matlab 程序,需要输入具体参数。
Matlab
14
2024-04-30
用户画像系统中的用户画像
用户画像概述
用户画像,通过不同数据维度刻画用户,利用数据分析为用户打上语义标签,将用户的行为和偏好抽象成多元化的人物标签,构建用户实体。
用户画像可以使用语义化表示,例如:
基础属性: 性别(男、女)、职业(学生、老师、白领)
价值属性: 高价值、中价值、低价值客户
用户画像也可以使用数学建模,将标签视为特征空间的维度变量,用户画像则表示为特征空间中的稀疏向量。
用户画像的应用
用户画像在互联网行业应用广泛,因为它可以定性和定量地描述用户:
定性: 抽象概括用户的生活场景和使用场景
定量: 统计分析用户的行为数据,挖掘核心用户价值
用户画像的动态性
用户画像的结果受数据动态变化影响
spark
11
2024-05-12
用户画像与用户角色辨析
用户画像,即 User Profile,是基于用户在互联网上的行为数据,经过收集和分析,为用户打上的一系列标签的集合。这些标签可以是用户的性别、地域、收入、情感状态、兴趣爱好以及消费倾向等。用户画像的构建有助于理解用户特征和行为模式。
需要注意的是,用户画像并非简单的标签堆砌,它更强调对用户群体特征的概括和提炼。用户画像的构建需要结合数据分析和专业领域知识,才能更加准确地描述用户群体。
与用户画像容易混淆的概念是用户角色 (User Persona)。用户角色是产品设计和用户调研中常用的方法,它通过构建虚拟的典型用户来代表目标用户群体。用户角色的描述通常包含用户的年龄、职业、教育背景、兴趣爱好
spark
17
2024-06-17
牛顿法改进
牛顿法是一种求根算法,它通过迭代过程逼近函数的根。该改进算法利用二阶导数信息提高收敛速度。
Matlab
12
2024-05-15
MATLAB程序设计教程牛顿-柯特斯法详解与优化
MATLAB提供了quad8函数来进行定积分,基于牛顿-柯特斯法的优化。函数调用格式为:[I,n]=quad8('fname',a,b,tol,trace),其中tol的默认值为10^-6。与quad函数相比,quad8函数能够更高效地求解定积分,减少函数调用步数。
Matlab
12
2024-08-02