使用Matlab编写的Beta分布概率密度代码
介绍使用Matlab编写的Beta分布概率密度函数的代码。此代码提供了对Beta分布的详细实现,适用于各种统计分析和模拟应用。具体内容包括Beta分布的数学定义及其在实际数据分析中的应用示例。
Matlab
15
2024-07-30
Matlab中的分位数回归分析
这是一段包含Matlab代码的分位数回归分析,代码完备且有详细注释,还显示了运行时间。
Matlab
9
2024-09-27
使用Matlab计算积雪分布的beta分布概率密度函数
AMS_shape_orient_matlab存储库提供了用于计算积雪分布的Matlab代码,详细描述了在《大气科学》杂志文章中如何使用H函数分布来量化积雪形状和方向对降雪速度和自收集率的影响。
Matlab
7
2024-10-01
金融科技视角下的QR分位数回归
随着金融科技的发展,QR分位数回归方法在数据分析中日益突出。
统计分析
11
2024-09-13
Matlab实现-高斯正态分布概率密度函数
在Matlab中使用高斯正态分布概率密度函数可以方便地进行数据分析。高斯正态分布是一种常见的统计模型,广泛应用于自然科学和工程领域。
Matlab
12
2024-07-12
Matlab实现Nakagami分布的概率密度函数
Nakagami分布在通信系统中广泛应用。以下是一个Matlab代码示例,用于绘制Nakagami分布的概率密度函数,您可以根据需要调整参数。
Matlab
9
2024-08-18
Matlab中概率密度函数的应用
Matlab提供了多种有用的函数,其中包括处理概率密度函数的工具。这些函数能够帮助用户分析和处理各种概率分布,如正态分布、泊松分布等,为数据分析和模拟提供了重要支持。使用Matlab,研究人员和工程师可以快速准确地计算和可视化不同分布的概率密度函数。
Matlab
8
2024-08-30
Matlab代码支持向量回归(SVR)和启示向量回归(RVR)分析及交叉验证
Matlab代码Pattern_Regression_Matlab支持向量回归(SVR)和启示向量回归(RVR)分析,包括交叉验证以评估预测能力。请在使用代码时引用相关论文:Zaixu Cui, Gaolang Gong,《机器学习回归算法及样本大小对基于功能连接特征的个性化行为预测的影响》,NeuroImage,2018年,178: 622-37;Zaixu Cui等,《利用灰质体积个性化预测阅读理解能力》,Cerebral Cortex,2018年,28(5):1656–72;Zaixu Cui等,《个性化预测阅读理解能力的研究》,2018年,Cerebral Cortex,28(5):1
Matlab
15
2024-08-24
多项式概率密度函数的MATLAB开发
这个MATLAB文件用于计算多项式概率密度函数的数值,其中参数N和P从输入的X中获取。需要注意的是,除非X是整数,否则密度函数的值为零。假设有一组随机变量{X1, X2, ..., Xk},每个变量取值范围在0到正整数之间。假设有k个非负数{p1, p2, ..., pk},它们的总和为1。对于每组k个非负整数{n1, ..., nk},其和为n,概率P( X1 = n1, X2 = n1, ..., Xk = nk ) = p1^n1 * p2^n2 * ... * pk^nk / (n1! * n2! * ... * nk!)。这样的变量集合{X1, ..., Xk}具有多项式联合分布,其
Matlab
14
2024-08-08