数据挖掘的完整项目合集,涵盖了从零基础到比赛实战的全过程,比较适合刚上手或者想提升的大数据爱好者。笔记整理得挺细,代码也都是能直接跑的,像是课堂内容、Kaggle 比赛经验,还有一些 Spark 和 Hadoop 的大项目脚本,通俗易懂,挺实用的。如果你最近在折腾大数据或者准备比赛,这套资料可以少走多弯路。
数据挖掘完整项目合集与实战笔记
相关推荐
数据挖掘技术与应用合集
数据挖掘的应用现在真是越来越广泛了,涉及到多领域,比如数据库技术、统计学、人工智能、机器学习等等。你想了解数据挖掘的相关技术和应用吗?这篇资源集合挺不错的,里面涵盖了许多关于数据挖掘、人工智能和机器学习的知识,几乎囊括了你需要的各类资料。如果你是刚接触数据挖掘的新人,可以从基本的资料开始学习,像是《最新大数据、人工智能、机器学习资料合集》就适合入门者。对于想深入了解具体技术的同学,《机器学习与人工智能读书报告》也有不少实用信息。另外,还可以了解一些开源资源,像《机器学习多种人工智能神经网络模型 MATLAB 源代码资源下载》就了多不错的代码示例,能够你快速上手。,这些资源适合各个阶段的学习者,
Hadoop
0
2025-06-18
数据挖掘项目
问题摘要:学生无法根据他们在课程中的表现以及与课程的在线学习环境(moodle)的互动来预测他们的最终成绩。目的:研究数据挖掘技术,对Moodle上的数据实施最适用的模型,对学生的成绩进行预测。任务包括:研究不同的数据挖掘技术,审查在类似领域实施的模型,查看在所述问题的领域中实现的其他模型。确定最适用于对Moodle格式的数据进行预测的技术,在给定的上下文中设计独特的数据预测模型,比较和评估所选模型与现有数据模型的准确性,展示研究结果,可视化结果。
数据挖掘
11
2024-07-12
数据挖掘与数据仓库课件合集
数据挖掘和数据仓库是现代数据领域的核心技能。课程内容覆盖了从数据预到决策树、聚类、OLAP 等多个方面,结合理论和案例实践,你快速上手。比如,课程里提到的决策树模型,像 ID3、C4.5 算法,能让分类问题一目了然。还有 OLAP 工具,切片、钻取这些操作适合多维度数据。如果你想深入了解这些技术的实际应用,相关课件里还附有代码实例和练习,手把手带你玩转数据挖掘。
数据挖掘
0
2025-06-17
数据挖掘课程资料合集
如果你对数据挖掘、商业智能(BI)等领域感兴趣,这份课程资料挺适合你。它从基础的商业智能到数据挖掘的核心技术,涵盖了多实用的知识。比如,讲到了如何通过OLAP和数据仓库技术,企业数据,进而辅助决策。而数据挖掘则教你如何从海量数据中提取出有用的信息,发现隐藏的规律。资料中还提到了一些实际的应用场景,比如客户购买行为预测、市场趋势等,不管你是初学者还是有一定基础,都能从中受益。课程中涉及的SQL Server平台和回归也实用,了解了这些,你就能更好地驾驭数据。总体来说,资料内容详细,涵盖面广,如果你对数据和挖掘有兴趣,这份资料会给你一个不错的入门与提升的机会。你可以通过实际案例来更好地理解概念,逐
数据挖掘
0
2025-06-13
数据挖掘经典论文合集
数据挖掘方向的资料真不少,尤其是论文这块,整整三大部分,干货挺足的。你要是最近在搞机器学习或者聚类,肯定能从里面翻出点有用的东西。嗯,我自己用的时候最顺手的是那篇关于聚类算法的,应用场景讲得比较接地气,看完就能上手。
数据挖掘领域的经典论文集合,分成三部分整理,逻辑清晰、分类还挺全的。适合平时喜欢翻资料、做调研的朋友。每篇文章都配好标题和链接,点进去就能直接看内容,响应也快,不用跳转好几层。
聚类算法的那篇文章,讲了好几种主流的做法,像是 K-means、DBSCAN 这类。里面还有应用案例,比如用在电信用户行为上,挺实用的。你做推荐系统或者画像建模,能直接套用思路。
还有一篇讲特征选择的,用
数据挖掘
0
2025-06-18
数据挖掘PDF资源合集
数据挖掘是从大量数据中提取有价值知识的过程,结合了计算机科学、统计学和机器学习等多个领域的技术。在这个PDF资源合集中,我们可以深入探讨数据预处理的重要性,包括数据清洗、数据集成、数据转换和数据减少。此外,还涵盖监督学习、无监督学习和半监督学习方法,如决策树、聚类和关联规则学习。深度学习模型如神经网络、卷积神经网络和循环神经网络在数据挖掘中的应用也将被详细探讨。开源工具和库如R语言的caret和tidyverse,Python的pandas、numpy、scikit-learn,以及专有软件如SAS、SPSS和Tableau也将被介绍。数据可视化工具如matplotlib、seaborn和gg
数据挖掘
10
2024-07-18
数据挖掘项目仓库
数据挖掘项目
作者: Philippe CHARRAT 和 Clément CORNU
目标: 使用 Python 创建推荐系统(开发中)
数据挖掘
9
2024-05-25
paranormal_distributions 2019-2020年数据挖掘项目合集
如果你正在做数据挖掘相关的项目,这个paranormal_distributions资源挺有意思的。它是 2019-2020 年 NOVA IMS 数据科学课程的一部分,包含了一个小组项目,超正态分布的数据。你可以通过pip install -r /path/to/requirements.txt命令来安装所有依赖,快速启动项目。如果你想用群集功能,记得通过 Jupyter Notebook 来可视化。整体来说,代码结构比较简单,适合初学者。虽然项目还未完成,但已经能跑起来了,挺不错的练手资源。如果你想深入了解,项目中也有一些群集的笔记,给你一些启发。需要注意的是,安装依赖时路径要正确哦。其实
数据挖掘
0
2025-06-14
数据挖掘实战演练
通过数据挖掘上机作业,可以有效提升实践能力!
数据挖掘
11
2024-05-12