-
图像导入和缩放:导入数据集,调整图像大小,归一化像素值。
-
模型构建:部署 EfficientNetB7 模型,记录模型信息。
-
相似度向量数据集:创建特征向量数据集,通过神经网络处理每个图像。
-
相似性度量:计算 Jaccard 和余弦相似度,搜索最佳匹配。
-
可选项:微调模型,裁剪图像。
数据挖掘最终项目 2021 春季
相关推荐
Aztech 数据挖掘最终项目
Aztech 数据挖掘项目的最终成果。
数据挖掘
16
2024-05-19
数据挖掘项目
问题摘要:学生无法根据他们在课程中的表现以及与课程的在线学习环境(moodle)的互动来预测他们的最终成绩。目的:研究数据挖掘技术,对Moodle上的数据实施最适用的模型,对学生的成绩进行预测。任务包括:研究不同的数据挖掘技术,审查在类似领域实施的模型,查看在所述问题的领域中实现的其他模型。确定最适用于对Moodle格式的数据进行预测的技术,在给定的上下文中设计独特的数据预测模型,比较和评估所选模型与现有数据模型的准确性,展示研究结果,可视化结果。
数据挖掘
11
2024-07-12
数据挖掘项目仓库
数据挖掘项目
作者: Philippe CHARRAT 和 Clément CORNU
目标: 使用 Python 创建推荐系统(开发中)
数据挖掘
9
2024-05-25
数据挖掘项目简介
商户在特定日期如“黑色星期五”和“双十一”等促销活动中可能会吸引一些一次性购物的新买家,商家需要识别谁可以转化为重复购买者以减轻促销对未来销售的影响。数据文件说明如下:
字段名称 | 定义---|---|---user_id | 用户唯一 ID年龄范围 | 用户年龄范围:50 时为 7 和 8;0 和 NULL(未知)性别 | 用户性别:女性 0,男性 1,NULL(未知)商户编号 | 商家唯一 ID标签 | 取值 {0, 1, -1, NULL},1 表示用户是商家的重复购买者,0 表示相反,-1 表示用户是潜在重复购买者
数据挖掘
15
2024-05-01
数据挖掘大师项目集锦
汇集数据挖掘领域专业人士的精选项目,展示数据挖掘实践应用与创新。
数据挖掘
18
2024-05-23
2021年数据挖掘趋势与技术应用
数据挖掘是从海量数据中提取有价值知识的过程,利用各种算法和统计方法揭示数据中的模式、关联和规律。在“Datamining_2021”项目中,我们聚焦于2021年数据挖掘的最新趋势和技术应用。Python作为强大易用的编程语言,因其丰富的数据处理库而在数据挖掘领域广泛应用。主要工具包括Pandas、NumPy、SciPy、Matplotlib和Scikit-learn等。Pandas提供高效的DataFrame数据结构,便于数据清洗、整合和分析;NumPy和SciPy支持数值和科学计算;Matplotlib用于数据可视化;Scikit-learn则提供机器学习各类算法。数据挖掘流程包括数据获取(
数据挖掘
8
2024-09-20
数据挖掘 2021年度课程作业分析
2021年数据挖掘课程的家庭作业涉及对葡萄酒评价数据集进行探索性分析。数据集包括winemag-data_first150k.csv文件,其中包含关于葡萄酒评价的详细信息。学生需完成数据预处理、探索性数据分析等任务。
数据挖掘
10
2024-07-20
情感识别:数据挖掘项目探索
情感识别:数据挖掘项目探索
这个项目深入研究了情感识别领域,利用数据挖掘技术探索情感识别的奥秘。项目重点关注:
数据收集与处理: 从社交媒体、文本对话等渠道收集情感数据,并进行清洗、标注等预处理工作。
特征工程: 从文本数据中提取能够表达情感的特征,例如词汇选择、语法结构、语义信息等。
模型构建与训练: 选择合适的机器学习或深度学习模型,进行训练和优化,使其能够准确识别文本中的情感倾向。
结果评估与分析: 评估模型的性能,并分析模型的优缺点,以及如何改进模型的准确率和鲁棒性。
通过这个项目,我们希望能够更深入地理解情感识别的原理,并探索其在各个领域的应用潜力。
数据挖掘
14
2024-04-30
数据挖掘项目cs6220项目
将训练文件“AP_train.txt”和测试文件“AP_test_par.txt”添加到数据目录。
运行命令“./MineDataSet.sh”。
数据挖掘
17
2024-04-30