决策树、随机森林、K 近邻这些经典的机器学习算法,用起来其实一点也不复杂,尤其是在做预测型数据时,真的是蛮实用的。

4-9 的这个课件讲得比较系统,逻辑也清晰,不仅有理论,还有实际案例,适合你边看边练。像k 近邻适合做用户画像,决策树就挺适合可视化展示业务规则,而随机森林对抗过拟合表现还不错。

资源里还贴心附上了不少相关链接,想深入研究或者找源码练手的,基本都能找到,比如那个 MATLAB 源码包,或者WEKA的可视化教程,都是不错的补充资料。

哦对了,如果你打算在Java或者Spark上做点集成,资源里也有相关实现,直接上手会更快。如果你刚接触这些算法,建议先跑一遍决策树,比较好理解。