聚类和距离度量是数据挖掘中的经典内容,是在数据集时,它理解数据点之间的相似度。想象一下,你有一堆数据,需要找出彼此接近的部分。这个过程就像是把这些数据分成不同的“群体”,而这个“群体”是通过计算彼此间的距离来划分的。比如,你可以使用欧几里得距离来衡量两个数据点之间的距离,直观又有效。推荐一些相关的资源供你参考,挺有用的。如果你想了解更多的关联规则挖掘技术,也可以看看这些相关文章。实战中,理解这些概念对提高数据的精度和效率会有哦。
聚类与距离度量数据挖掘关联规则
相关推荐
关联规则挖掘数据挖掘中的关联规则分析
关联规则挖掘在数据挖掘中有着广泛的应用,最典型的例子就是购物篮。比如,你想知道顾客常常购买哪些商品组合?通过关联规则挖掘,你能出哪些商品常常一起被买,哪些商品的购买时间序列比较稳定。像超市货架设计、库存管理等,都能从这些中受益。通过这些技术,你可以更好地满足顾客需求,提高销售效率。如果你刚开始接触数据挖掘,学习购物篮问题是一个不错的起点。这里有些链接可以进一步你了解相关的技术和案例哦。
数据挖掘
0
2025-06-24
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
12
2024-05-31
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
11
2024-05-25
数据挖掘关联规则课件
数据挖掘课件的关联规则部分讲得还挺扎实的,适合你想了解商业怎么搞的朋友们。支持度、可信度这些概念讲得不啰嗦,能快速搞明白怎么从购物记录里挖出像“尿布+啤酒”这种看似离谱但实际有用的组合。
关联规则的比较接地气,像“身体+头”这类术语,也都配了例子,快就能上手。比如你要用户买了手机是不是还会买壳子?就靠这个。
算法部分重点了Apriori,用起来虽然不算新潮,但思路清晰,适合刚入门的朋友理解频繁项集怎么来的。顺带也提了下FP-Tree,你要是想研究高效挖掘的话,可以再去深挖下。
文中链接挺丰富的,什么剪枝、递减优化这些技巧也都有。像Apriori 高效剪枝关联规则挖掘算法、支持度递减关联规则挖掘
数据挖掘
0
2025-06-30
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
21
2024-04-30
数据仓库与数据挖掘关联规则挖掘
关联规则的实用性真是没话说,尤其是在做电商推荐、用户这些场景里,效果还挺的。Apriori 算法就比较经典,逻辑也不复杂,适合上手。你要是想理解为什么某些商品总是一起买,或者想优化下商品推荐,这篇资料真的蛮值得一看。
数据仓库里的关联规则,用的就是那种“如果 X 那么 Y”的套路,思路清晰,但其实背后靠的是挺严谨的数学支持,比如置信度和支持度。如果你经常和大数据打交道,理解这些指标的意义挺关键的。
挖掘过程一般分两步,先搞出频繁项集,再生成规则。简单说就是找出哪些组合常出现,看看它们之间有没有可靠的关系。用Apriori能一步步把组合筛出来,也有像FP-growth、Eclat这样的改进版,效
数据挖掘
0
2025-06-25
数据挖掘关联规则PPT分享
这份由数据挖掘专家整理的PPT,深入浅出地讲解了关联规则的相关知识,对于想要学习和了解数据挖掘的同学来说,是一份不可多得的参考资料。
数据挖掘
17
2024-04-30
关联规则挖掘数据挖掘技术概览
从交易数据库里挖规则,用得挺顺的一份资料,适合你想搞懂关联规则挖掘的来看看。文档里一口气讲了从一维布尔到多维多层的挖掘方式,还捎带聊了相关性,内容够全,节奏也清晰,适合边学边实操。
关联规则挖掘的套路,主要靠频繁项集和支持度置信度的组合。比如,你常见的Apriori 算法,用得多、资料多,学习起来也轻松。配合后面讲的AIGEP 算法,还能应付多维复杂场景,适合项目里玩点花样。
你要是搞WEKA的,可以顺着这份教程练起来,界面操作友好,过程还直观。想试试层级结构的,也别错过多层关联规则这块,挺适合做数据层次的。
嗯,如果你比较关心规则之间的冲突、负向关系,也有加权负关联规则挖掘这种小众内容,虽然
算法与数据结构
0
2025-06-16
多层关联冗余过滤数据挖掘关联规则
多层关联规则里的冗余过滤,挺适合想深入数据挖掘的你。规则太多看得眼花?其实多是祖孙关系里来的重复项,过滤下更干净明了。用Apriori算法来挖掘这些关联规则,挺常见的。不过一不小心就挖出一堆重复信息。比如你有“买了牛奶就买面包”,那“买了牛奶也买了全麦面包”也会被算进来,但其实意思差不多。嗯,过滤掉祖先那种重复规则,看起来会清爽多。再加个WEKA工具,界面友好,操作也简单。不管你是用户购物行为,还是想做推荐系统,套上这套逻辑准没错。像是用min_confidence来限制规则,或是设置层级结构分类,效果都蛮直观。如果你还不太熟,可以先看看这些资料:挖掘多层关联规则,或者去翻翻WEKA 关联规则
数据挖掘
0
2025-06-13