随机森林的肥胖预测模型,数据+代码+报告都有,拿来就能跑,适合做毕设、项目复现。算法部分用了决策树和随机森林来搞多标签分类,重点是 14 个生活习惯因素对肥胖的影响,模型还能直接评估你现在的健康状况哦。数据集来自UCI,结构清晰,字段也比较友好,直接上手没啥压力。实验报告写得还挺详细,写论文的时候参考起来也方便。整体看下来,适合想练习机器学习建模、模型可解释性这类内容的朋友。如果你平时对健康预测感兴趣,或者在找靠谱点的综合项目练练手,这份资源挺值得一试的。
随机森林算法肥胖预测模型及成因分析
相关推荐
随机森林算法概述
随机森林算法是一种集成学习方法,由多棵决策树组成。它在分类和回归任务上表现出色,可以处理大规模数据集,并且易于并行化。该算法通过自助采样(bootstrap sampling)创建多个子集来训练多棵决策树,并在每个决策树的节点处随机选择特征,这样可以增加模型的泛化能力和准确性。随机森林算法的核心是构建多个决策树并进行组合,以获得最终的预测结果。构建单棵决策树时,采用有放回的抽样方法生成自助样本集,这意味着训练集中有些样本可能会被重复选择,而有些则可能一次也不被选中。这有助于提高模型在新数据上的泛化能力。在决策树的每个节点,随机森林算法会从全部预测变量中随机选择一部分作为候选变量,从中寻找最佳的
算法与数据结构
21
2024-11-04
Python实现随机森林算法简介及应用场景分析
介绍了Python编写的随机森林算法及其在分类预测中的应用。随机森林是数据挖掘中常用的一种集成学习算法,通过决策树集成进行分类或回归。算法核心包括对数据集进行有放回抽样,随机选择特征子集,生成多棵完整的决策树,最终通过投票机制得出预测结果。详细的scikit-learn文档可参考:http://scikit-learn.org/stable/modules/en
数据挖掘
12
2024-07-21
煤质测井响应机制及工业分析指标预测模型
河南新郑矿区赵家寨井田研究表明,煤的工业分析指标与其测井参数之间存在显著相关性。
相关性表现:
原煤水分含量与密度和视电阻率呈负相关,与自然电位和自然伽马呈正相关。
灰分与密度、自然伽马和自然电位呈正相关,与视电阻率呈负相关。
原煤挥发分与视电阻率和密度呈负相关,与自然电位和自然伽马呈正相关。
相关性成因:
煤中有机质和无机质的含量、性质、结构以及煤化作用等因素决定了煤质指标与测井参数之间的相关性。
应用:
通过多元统计模型,利用测井曲线预测原煤工业分析指标,服务于煤炭与煤层气勘探开发。
统计分析
15
2024-05-15
探究灰色预测模型
灰色预测模型,基于少量、不完整的信息构建数学模型,以此预测未来趋势。
在运用运筹学方法解决实际问题、制定发展战略和政策、进行重大决策时,科学预测不可或缺。
预测,是基于客观事物过去和现在的发展规律,借助科学方法对其未来发展趋势和状况进行描述和分析,形成科学假设和判断的过程。
统计分析
15
2024-05-23
汽车价格预测模型分析与比较
该项目通过收集网站上的汽车广告数据,运用线性回归和支持向量回归(SVR)模型预测特定汽车的价格。研究比较了这两种模型的效果,分析了市场收集的汽车价格及其特征对预测的影响。线性回归是一种简单而常用的数据挖掘技术,SVR则能更有效地处理非线性关系,两者均展示了在汽车价格预测中的应用潜力。
数据挖掘
12
2024-07-18
预测模型的应用前景
随着技术的不断进步,预测模型在各个领域展现出越来越广阔的应用前景。
统计分析
7
2024-09-14
预测型数据分析K近邻、决策树与随机森林算法详解
决策树、随机森林、K 近邻这些经典的机器学习算法,用起来其实一点也不复杂,尤其是在做预测型数据时,真的是蛮实用的。4-9 的这个课件讲得比较系统,逻辑也清晰,不仅有理论,还有实际案例,适合你边看边练。像k 近邻适合做用户画像,决策树就挺适合可视化展示业务规则,而随机森林对抗过拟合表现还不错。资源里还贴心附上了不少相关链接,想深入研究或者找源码练手的,基本都能找到,比如那个 MATLAB 源码包,或者WEKA的可视化教程,都是不错的补充资料。哦对了,如果你打算在Java或者Spark上做点集成,资源里也有相关实现,直接上手会更快。如果你刚接触这些算法,建议先跑一遍决策树,比较好理解。
统计分析
0
2025-06-16
员工离职预测与分析:基于随机森林的可视化洞察
本项目利用 JupyterLab 和 Python,以 Kaggle 上经典的员工离职数据集为基础,构建随机森林模型预测员工离职倾向。项目涵盖数据清洗、特征工程、模型训练与评估等环节,并利用可视化技术直观展示模型结果,例如重要特征分析、预测结果分布等,帮助企业深入理解员工离职背后的关键因素。
算法与数据结构
20
2024-05-24
随机森林回归的QOOB保形预测方法
分位数袋外 (QOOB) 保形是一种用于预测推理的无分布方法。QOOB 主要用于回归问题,但也可以扩展到分类等非回归问题。
使用方法
克隆代码库: git clone https://github.com/AIgen/QOOB.git
运行代码: 需要 MATLAB 环境 (MATLAB 2019b 开发,MATLAB 2019a 测试)。
直接调用 QOOB 生成预测集
代码库包含 QOOB 和其他基线保形方法的实现,可以重现论文 [3] 中 QOOB 与其他保形方法在 11 个 UCI 数据集上的比较结果。
Matlab
13
2024-05-21