基于随机森林的回采工作面瓦斯涌出预测
引入随机森林算法构建回采工作面瓦斯涌出预测模型,研究表明该模型预测效果较好。
数据挖掘
19
2024-05-01
随机森林算法肥胖预测模型及成因分析
随机森林的肥胖预测模型,数据+代码+报告都有,拿来就能跑,适合做毕设、项目复现。算法部分用了决策树和随机森林来搞多标签分类,重点是 14 个生活习惯因素对肥胖的影响,模型还能直接评估你现在的健康状况哦。数据集来自UCI,结构清晰,字段也比较友好,直接上手没啥压力。实验报告写得还挺详细,写论文的时候参考起来也方便。整体看下来,适合想练习机器学习建模、模型可解释性这类内容的朋友。如果你平时对健康预测感兴趣,或者在找靠谱点的综合项目练练手,这份资源挺值得一试的。
数据挖掘
0
2025-06-17
随机森林算法概述
随机森林算法是一种集成学习方法,由多棵决策树组成。它在分类和回归任务上表现出色,可以处理大规模数据集,并且易于并行化。该算法通过自助采样(bootstrap sampling)创建多个子集来训练多棵决策树,并在每个决策树的节点处随机选择特征,这样可以增加模型的泛化能力和准确性。随机森林算法的核心是构建多个决策树并进行组合,以获得最终的预测结果。构建单棵决策树时,采用有放回的抽样方法生成自助样本集,这意味着训练集中有些样本可能会被重复选择,而有些则可能一次也不被选中。这有助于提高模型在新数据上的泛化能力。在决策树的每个节点,随机森林算法会从全部预测变量中随机选择一部分作为候选变量,从中寻找最佳的
算法与数据结构
21
2024-11-04
员工离职预测与分析:基于随机森林的可视化洞察
本项目利用 JupyterLab 和 Python,以 Kaggle 上经典的员工离职数据集为基础,构建随机森林模型预测员工离职倾向。项目涵盖数据清洗、特征工程、模型训练与评估等环节,并利用可视化技术直观展示模型结果,例如重要特征分析、预测结果分布等,帮助企业深入理解员工离职背后的关键因素。
算法与数据结构
20
2024-05-24
基于粒子群优化的随机森林数据分类预测工具包.zip
该数据分类预测工具包使用了基于粒子群优化的随机森林算法,能够处理各种数据集并支持数据集的灵活替换。随机森林在数据分类中具有广泛的应用,通过优化算法进一步提升了分类精度和效率。
统计分析
13
2024-07-22
matlab随机森林代码实现
经过验证的matlab随机森林代码,确保有效性。今年的内部文档详细解释了其操作步骤及应用场景。
Matlab
7
2024-09-19
多边形内的随机点生成MATLAB开发方法
如果您需要在一个2D凸多边形内生成均匀分布的随机点,可以利用MATLAB的randPolygone函数。该函数基于randTriangle来处理三角形,并确保多边形内的每个区域都有相同的采样机会。以下是一些示例:三角形=[0,0;10,0;2,3]; 洛桑奇=[0,0;2,1;0,2;-2,1]; 卡雷=[0,0;2,0;2,2;0,2]; 六边形=[0,0;10,1;30,8;20,8;0,5]; 十二角形顶=[cos(linspace(0,2pi,13))', sin(linspace(0,2pi,13))']; 十二角形=rTriangle=randPolygone(十二角形顶,1e4)
Matlab
12
2024-07-22
随机多边形绘图工具
bubblebath 函数
此函数用于生成随机分布的圆形或其他多边形图形。用户可以灵活设置图形参数,例如:
画布尺寸
多边形半径范围
多边形边数(控制形状)
图形密度
多边形间距或重叠程度
边缘处理方式等
函数会输出图形,并提供四个变量,方便用户进行后续操作或复现图形。
bubblebath_examples.mlx 文件
此文件包含多个示例,演示如何调整参数并利用输出变量进行扩展操作,例如为图形着色、计算每个多边形的面积等。
函数参数详情
请参考帮助文档获取每个参数的默认值及详细说明。
更新动态
请关注此页面获取最新更新。
Matlab
19
2024-04-29
线性回归预测效果检验方法
回归的预测方法在建模中用得挺多,尤其是一元线性回归,既简单上手,又能快速判断变量之间是不是“靠谱”的线性关系。这个资源就围绕y = a + bx展开,讲了回归效果的检验思路,像相关系数rxy怎么用,怎么判断模型是不是能信得过,挺适合你用来搭配自己写的预测逻辑。
文中提到的相关系数其实就是衡量变量之间“搭不搭”的指标,数值越接近±1,关系越线性。你可以看看这份相关系数的计算方法,讲得挺实在的,拿来做验证挺方便。
想直接撸代码的也不用愁,推荐你看这份MATLAB 的拟合源码,直接跑出来结果,连图都有,适合比赛或者做课题用。
如果你用 Python,那份Pearson 相关系数的计算方法也蛮实用,代
算法与数据结构
0
2025-07-03