用户评分的三列结构:用户 ID、物品 ID、评分,简单但实用,尤其在做推荐系统的时候。评分区间是 0 到 5,结构清爽,上手快,适合用来练习协同过滤、聚类这种经典算法。
用这个数据集,你可以快速搭建个性化推荐模型,比如用SVD预测用户喜欢的商品。想更进阶一点?可以丢到Hadoop或Spark环境里跑分布式,效率高,扩展性也不错。
我比较常用它来测试模型效果,比如算个RMSE或MAE,评估推荐准确度也方便。而且用它来跑个时间序列,也能看出用户兴趣的波动,比如节假日、促销期有没有影响评分。
数据预时,记得先清洗空值和异常值,评分太离谱的是误点或恶意操作。评分标准化也蛮重要,不然模型训练效果会受影响。
如果你在找推荐系统的练手机会,或者想搭个分布式的评分项目,这个数据集真挺合适的。顺手放几个相关资源链接,有需要的可以直接跳转看看。