时间序列相似性在各个领域都挺有用的,尤其是在预测和数据挖掘上。你知道吗,传统的欧氏距离在高维数据时可不太好用,容易陷入“维度灾难”,这时候就得用一些频域方法或者是形态方法来。比如,离散傅立叶变换(DFT)就可以将数据从时域转到频域,比较频率成分来找相似性。不过,DFT 也有自己的不足,比如会丢失局部极值信息。所以,像基于形态的分段算法(PLR)就挺受欢迎,它通过把时间序列分成线性段来逼近整个数据趋势。如果你需要复杂的数据,选择合适的算法真的重要。,别忘了 PLR 方法可以通过调整误差阈值来提升分段的质量,避免一些不准确的分段现象。