聚类是数据挖掘中的一种常用技术,主要是把数据分成几个相似的组,叫做簇。想象一下,你在找相似的图片或者文章内容,聚类就能帮你把相似的都归在一起,区分开不一样的内容。这个方法挺适合用在大数据中,像是推荐系统、图像等领域都能见到它的身影。其实聚类算法有多种,你可以根据具体情况选择,比如 K-Means、DBSCAN 什么的,操作起来都还不错。需要注意的是,聚类算法的效果比较依赖于相似度的定义,选择合适的相似度度量关键。想了解更多细节,你可以参考相关资料,像是计算相似度的 Matlab 程序,或者基于 TF-IDF 的内容相似度算法实现,这些都挺实用的。
聚类Clustering数据挖掘技术与应用
相关推荐
层次聚类算法: 数据挖掘技术与应用
层次聚类算法无须预先设置参数,但需终止条件。
聚合式 (AGNES) 和分裂式 (DIANA) 算法属于层次聚类算法。
Hadoop
21
2024-04-30
CHAMELEON算法数据挖掘聚类技术与应用
CHAMELEON 算法是个挺有意思的算法,适合数据挖掘中的聚类问题。它的核心思想是通过两个阶段来数据,用图分割算法把数据切割成小块,再用层次聚类反复合并这些块,直到结果满意。这个算法适合复杂的、动态变化的数据集,尤其在你需要动态调整数据结构时效果比较好。其实,多数据科学项目都能用上它,是在做聚类时,能够你找出数据之间的隐藏关联。CHAMELEON可以各种各样的聚类情况,是对于不同密度的数据,效果还不错。如果你要做类似的工作,可以看看这个算法的实现,挺实用的。
Hadoop
0
2025-06-14
聚类数据挖掘技术概述
此概述涵盖了聚类数据挖掘技术。
数据挖掘
16
2024-05-13
聚类分析-数据挖掘的新技术应用
聚类分析是数据建模中简化数据的一种方法,作为多元统计分析的主要分支之一,它已被广泛研究多年。从机器学习的角度看,聚类是一种无监督学习过程,用于发现隐藏在数据中的模式。在实际应用中,聚类分析是数据挖掘的核心任务之一,高效处理大型数据库和数据仓库。
Hadoop
16
2024-07-25
数据挖掘技术与应用
数据挖掘的技术和应用算是我最近挺推荐的一份资料,内容讲得还蛮系统的。开头就直接讲清楚了数据挖掘到底干啥的——简单说,就是从一堆数据里扒出有用的信息,帮你少走弯路、做决策更靠谱。
模式识别、统计这些词听着挺吓人,其实你理解成:用各种办法把看不出来的规律给找出来。比如银行用来识别信用卡诈骗、或者电信公司查通话记录找可疑行为,都靠它。
还有一部分讲了蛮多行业应用的例子,像是精准营销、客户细分这些。你要是搞 CRM 系统或者电商平台,这些案例可以给你不少灵感。
有意思的是它还讲了几个常见流程模型,比如SPSS 的 5A 模型和SAS 的 SEMMA,看起来有点像项目流程图那味,但其实还挺实用,适合新手
数据挖掘
0
2025-06-29
聚类分析应用与数据挖掘算法
聚类在数据挖掘中用来发现数据集中的自然分组。比如在生物领域,你可以用它来基因和蛋白质的相似性,或者在股票市场中,通过聚类找到价格波动相似的股票。它还能简化数据集,聚焦在最重要的信息上。这个算法的应用场景相当广泛,是在大规模数据时,能显著提高效率。
提到聚类的实现,Matlab 的相关工具也挺有。比如基于 Matlab 开发的 MSKCC GDSC 癌症基因组学数据工具,它了一个简便的环境来运行各种数据挖掘算法。如果你有类似的需求,参考一下这类工具会比较方便。也可以看看一些关于数据挖掘和基因组的相关文献,了解聚类的不同实现方式和优化方法。
,聚类是一个强大的工具,能你从海量数据中提取价值。只要掌
数据挖掘
0
2025-06-11
数据挖掘技术与应用合集
数据挖掘的应用现在真是越来越广泛了,涉及到多领域,比如数据库技术、统计学、人工智能、机器学习等等。你想了解数据挖掘的相关技术和应用吗?这篇资源集合挺不错的,里面涵盖了许多关于数据挖掘、人工智能和机器学习的知识,几乎囊括了你需要的各类资料。如果你是刚接触数据挖掘的新人,可以从基本的资料开始学习,像是《最新大数据、人工智能、机器学习资料合集》就适合入门者。对于想深入了解具体技术的同学,《机器学习与人工智能读书报告》也有不少实用信息。另外,还可以了解一些开源资源,像《机器学习多种人工智能神经网络模型 MATLAB 源代码资源下载》就了多不错的代码示例,能够你快速上手。,这些资源适合各个阶段的学习者,
Hadoop
0
2025-06-18
数据挖掘技术与应用分享
数据挖掘公司的内部培训内容,讲得还挺通俗的,适合刚入门或想搞明白怎么在业务里用数据挖掘的朋友。没有太多术语堆砌,更多是结合实际场景讲讲思路,比如用户行为、销售预测这些,听着就不枯燥。你如果平时接触点 BI 或者 CRM 系统,应该会有点共鸣。推荐你在午休的时候刷一刷,轻松又涨知识。
Hadoop
0
2025-06-22
数据挖掘技术与应用指南
数据挖掘入门的干货 PDF,内容比较全,讲得也不难,适合前端同学了解下后端的数据套路。从数据挖掘的定义、价值,到各种模型、工具流程,包括和 CRM、OLAP 的关系,整一套流程讲得清清楚楚。嗯,属于那种读完能立马找灵感做点事的类型。模型验证这部分说得蛮实际,比如先小范围试验再扩展,跟前端做 AB 测试一个思路。还有像SPSS 的 5A、SAS 的 SEMMA模型,对做数据可视化或者前后协作也挺有。文末还整理了一堆实用资源:像Matlab 代码到 C++的转换、客户信用风险预测的实战案例,甚至还包括欺诈检测和网络,适合想拓展视野的朋友。如果你做可视化、BI 看板、甚至是做一些用户画像相关的前端交
数据挖掘
0
2025-06-24