k-means 算法的实现源代码挺,适合想入门机器学习或者数据的小伙伴。它的核心思想就是通过聚类把数据分组,算法会尽量确保每个组里的数据尽相似,不同组的数据差异大。你可以用 Python3 实现,像 NumPy 和 Pandas 这种库也都挺常见,你做数值计算和数据。这个压缩包里有详细的代码,可以帮你快速了解如何实现 k-means。主要的代码文件就是kmeans.py
,用来实现算法的核心部分。比如,你可以通过main.py
加载数据并运行聚类,再用visualize.py
做可视化,看看聚类效果。requirements.txt
也列出了需要的依赖,适合快速上手测试。如果你是学习大数据或者想知道如何选择 K 值,文件里的代码可以不少,直接操作就能加深理解。
K-means算法实现Python 3聚类算法
相关推荐
Python实现K-Means聚类算法
介绍了如何使用Python编写K-Means聚类算法的实现代码,适合学习和参考。
算法与数据结构
11
2024-07-13
Matlab实现K-means聚类算法
K-means聚类算法是一种常用的无监督学习方法,适用于数据分群和模式识别。在Matlab中实现K-means算法能够有效处理数据集,并生成聚类中心。通过迭代更新聚类中心和重新分配数据点,算法能够优化聚类结果。
Matlab
12
2024-08-22
K-Means Java实现聚类算法
Java 写的 K-Means 聚类算法,结构清晰,代码也不啰嗦,挺适合刚入门或者要快速验证模型思路的场景。你可以看看它怎么初始化中心点,还有分类过程的迭代优化逻辑,挺直观的。
K-Means 的 JAVA 实现,逻辑比较清楚,文件结构也不复杂。Cluster、Point这些类写得还挺工整,方法注释也不多不少,刚好够看懂。调试的时候也省心,不用翻一堆依赖。
嗯,要是你用 Python 比较多,也可以顺便对比下Python 版本的实现。你会发现 Java 版有点像强类型的思路训练,还挺锻炼逻辑思维的。
另外还有个对比写得不错的资源,Java 和 Python 的实现对比,看完对两边的优势差异会更
统计分析
0
2025-06-30
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means算法C++聚类实现
K 均值(K-means)算法是一种挺基础的聚类算法,它通过将数据分成 K 个类别来找出数据的潜在结构。它的过程简单,是通过随机或特定策略选取 K 个初始中心点,通过迭代不断调整每个数据点的归属,直到聚类结果稳定为止。这里分享的这个 C++实现的简单聚类器,能帮你快速用 K-means 算法来对数据进行分类。其实,算法的核心逻辑并不复杂,关键是如何选择合适的初始点和 K 值。至于数据的预,像归一化啥的也是重要的,能让聚类效果更准确。如果你刚接触聚类算法,这个项目挺适合你入门的,操作起来简单,效果也还不错。,如果你想要更复杂的聚类方法,像 DBSCAN 之类的算法也可以尝试。
数据挖掘
0
2025-06-17
K-means聚类算法的MATLAB实现
K-means是一种传统的计算K均值的聚类算法,因其计算复杂度低,而成为应用最为普遍的一种聚类方法。该算法通过将数据分为K个簇,使得每个簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。K-means算法的核心思想是迭代地调整每个簇的中心(即质心),直到聚类结果收敛。
Matlab
19
2024-11-05
Java与Python实现K-means聚类算法结果对比
K-means 聚类算法一直是数据中常用的一个技术,今天推荐的这个资源正好了 Java 和 Python 两种实现方式,挺适合那些想对比这两种语言的实现效果的开发者。它通过设计一个名为MyPoint的类来表示二维坐标点,并在此基础上进行 K-means 聚类。你可以看到从点的创建到聚类结果输出的全过程,适合用来学习和了解 K-means 的原理。
其实,MyPoint类的设计也蛮巧妙的,包含了距离计算等方法,方便用于计算每个点与其他点的距离。而且它的随机生成数据功能也挺实用,可以确保实验数据的复现性。,如果你也在做聚类,试试这个资源,你更深入地理解算法。还不错的资源!
统计分析
0
2025-06-13
MATLAB 中 K-Means 聚类算法的实现
本指南提供了 MATLAB 中 K-Means 聚类算法的详细实现,无需更改参数即可直接使用,同时提供了参数更改选项。
算法与数据结构
11
2024-05-30
详解K-means聚类算法.pdf
K-means聚类算法是一种基于分割的无监督学习方法,将数据集分成K个互不重叠的簇,以使每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。该算法简单高效,广泛应用于数据分析和挖掘领域。详细算法步骤包括随机初始化簇中心、将数据点分配到最近的簇、更新簇中心以及迭代优化过程。其原理在于通过迭代优化达到稳定的簇分布。K-means聚类算法简明易懂,执行效率高,因此在多个领域得到广泛应用。
算法与数据结构
16
2024-08-08