k-means 算法的实现源代码挺,适合想入门机器学习或者数据的小伙伴。它的核心思想就是通过聚类把数据分组,算法会尽量确保每个组里的数据尽相似,不同组的数据差异大。你可以用 Python3 实现,像 NumPy 和 Pandas 这种库也都挺常见,你做数值计算和数据。这个压缩包里有详细的代码,可以帮你快速了解如何实现 k-means。主要的代码文件就是kmeans.py,用来实现算法的核心部分。比如,你可以通过main.py加载数据并运行聚类,再用visualize.py做可视化,看看聚类效果。requirements.txt也列出了需要的依赖,适合快速上手测试。如果你是学习大数据或者想知道如何选择 K 值,文件里的代码可以不少,直接操作就能加深理解。