在文本分类这块,大量的文本数据时,选择合适的方法可真是关键。比如说,朴素贝叶斯和AdaBoost
结合的 Naive Bayes-Boosting 方法,挺好用的,它能通过增强弱分类器的能力来提升分类准确度。是在中文文本分类中,复杂的字符和歧义词问题时,向量空间模型和反向最大匹配分词技术有时也能带来不错的效果。,学会合理选择不同方法,能让你的分类任务变得更轻松高效。
如果你对中文文本的或者提升分类准确度感兴趣,可以试试这篇文章里的一些方法,是对Naive Bayes-Boosting
的运用。,做文本分类时,记得多考虑模型的适用性,方法的选择要看具体的数据特性哦。
Naive Bayes-Boosting中文文本分类方法优化
相关推荐
中文文本分类语料库测试集下载
中文文本分类语料库测试集下载包含了复旦大学李荣陆提供的测试语料。其中,test_corpus.rar包含9833篇文档,用于测试;train_corpus.rar则是包含9804篇文档的训练语料。两个语料库各分为20个相同类别,并按照1:1的比例划分。
算法与数据结构
17
2024-07-14
Python实现中文文本分句的示例
定义管理选项不安装EM组件,如果有需要可以以后建立美河学习在线www.eimhe.com
Oracle
12
2024-08-22
基于小规模标注语料的增量式Bayes文本分类算法
文本自动分类是数据挖掘和机器学习中重要的研究领域。针对难以获取大量带类标签的训练集的问题,提出了基于小规模标注语料的增量式Bayes文本分类算法。该算法分两种情况处理:一是对于新增有类标签的样本,直接重新计算其属于某类别的条件概率;二是对于新增无类标签的样本,利用现有分类器为其指定类标签,然后利用新样本来修正分类器。实验证明,该算法有效且可行,相较于Naive Bayes文本分类算法,精度更高。增量式Bayes分类算法的提出为分类器更新开辟了新的途径。
数据挖掘
13
2024-07-13
NaiveBayes文本分类项目
朴素贝叶斯算法是文本数据时的好帮手,尤其在进行文本分类时挺靠谱的。通过一个概率模型,它能根据文本中的词汇来预测标签。在这个项目中,朴素贝叶斯用来预测 Stack Overflow 上问题的标签。你可以使用它来分类像'Java'、'Python'等问题标签。过程中,数据预关键,需要清洗文本、去掉停用词、做词形还原等。,利用TF-IDF或者词袋模型来表示文本特征。,训练模型,学习不同标签的概率关系。训练好后,拿一个新问题输入,模型就能给出最匹配的标签。,可以用sklearn.naive_bayes来实现朴素贝叶斯算法,验证模型效果时还可以使用交叉验证和一些指标来评估。挺适合用来入门机器学习,了解文
数据挖掘
0
2025-06-24
系统配置-Python实现中文文本分句的实例
2.2 系统配置
2.2.1 创建组 --- 创建组,节点2执行相同命令:
mkgroup -'A' id='500' adms='root' oinstallmkgroup -'A' id='501' adms='root' asmadmin
美河学习在线 www.eimhe.com
Oracle
8
2024-11-06
图像分类方法
空间金字塔模型对图像进行划分,分别提取各子块特征,赋予不同权重。三层模型下,划分等级0权重1/4,等级1权重1/4,等级2权重1/2。该模型有效描述图像的空间信息。
数据分类算法包括最大熵、支持向量机、朴素贝叶斯、决策树等。
数据挖掘
18
2024-04-30
快速文本分类系统的新关键词提取方法
使用改进的分词方法,提取动词、虚词和停用词作为关键词。
应用评分算法筛选关键词。
分类123篇文档,提高分类速度而不影响准确率。
数据挖掘
19
2024-05-25
基于粗糙集的文本分类研究
文本分类里的维度问题,真的是老大难了。高维特征又多又乱,模型跑得慢不说,准确率还不稳定。粗糙集理论就挺能这个问题的,专门干降维这种脏活累活,精度还不掉。文中讲得挺全,从上近似、下近似这些基础概念,到怎么做知识约简,都说得清清楚楚。文本特征一多,像VSM 模型那种传统方法就开始吃力了。你用过支持向量机或KNN的应该懂,一不小心就爆内存。用粗糙集前先做停用词过滤和分词,后面再靠它筛关键特征,效率能提升不少。我觉得这篇 PDF 最实用的地方在后半部分,做了个案例对比实验,直接把传统方法跟粗糙集做的模型效果摆一块,哪种更稳一目了然。你要是项目里正好卡在特征维度上,建议真看看。顺手还能参考下里面推荐的特
数据挖掘
0
2025-07-01
分类方法评价指标
在数据挖掘中,衡量分类方法优劣的指标多种多样,以下列举几项关键指标:
1. 预测准确率:- 指模型正确预测结果的比例,是评估分类模型最直观的指标。
2. 模型构建时间:- 构建模型所需时间,体现算法效率。
3. 模型使用时间:- 使用模型进行预测所需时间,影响模型实际应用效率。
4. 健壮性:- 模型抵抗噪声数据和缺失值干扰的能力,体现模型稳定性。
5. 可扩展性:- 模型处理大规模数据集的能力,决定模型适用范围。
6. 可操作性:- 模型规则易于理解和应用的程度,影响模型在实际应用中的可解释性和可操作性。
7. 规则优化:- 模型规则的简洁性和优化程度,影响模型的效率和可解释性。
8. 决策
Hadoop
18
2024-05-19