李航老师的《统计学习方法》里的支持向量机部分,笔记整理得还蛮清楚的,适合你刚入门 SVM 或者想快速回顾重点的时候看看。内容不啰嗦,图示也挺直观,看起来不会头大。

支持向量机(SVM)这种算法吧,虽然看着数学味儿挺浓,其实搞懂了核函数的核心逻辑,多分类任务都能用得上,比如文本分类、人脸识别这些场景就挺常见的。

笔记作者整理了不少实用资源,比如Matlab的代码示例、粒子群优化(PSO)调参数的案例,还有经典的鸢尾花数据集实验,比较全也蛮接地气,配合起来看学习效率更高。

哦对了,如果你平时用Python,虽然这些代码是 Matlab 写的,但思路是一通百通的,逻辑和参数选择都能参考。你要是准备搞个毕业设计或者项目展示,这些例子真的是现成的灵感库。

建议先从这个笔记入手,结合下面的资源一起看,效率高还不枯燥:

如果你对 SVM 不太熟,用这个笔记+这些案例练练手,会快多,真不骗你~