该方法应用于负荷数据曲线分析,能够对输入的曲线数据进行聚类分析,并输出分类结果和可视化图表。其主要过程包括数据均一化、曲线平滑、特殊值处理、利用DB值评价聚类结果以及自动选择最佳聚类数等,能够有效地处理曲线数据并实现精准分类。
基于K-means算法的负荷数据曲线聚类分析
相关推荐
K-means负荷数据曲线聚类
全年 365 条用电负荷曲线的 K-means 聚类,k_means111.m 这份代码写得还挺清爽的,尤其适合用来做电力数据类的聚类探索。你直接扔一堆负荷曲线进去,它就能帮你分成几个典型日——比如工作日、周末、节假日那种,挺实用的。
代码逻辑比较直白,基本上是先归一化,再跑一遍 K-means 算法。用的是 Matlab 的内置函数,像 kmeans() 这些都直接调,参数也写得比较清楚,新手看起来不会太吃力。
如果你之前没接触过类似的,可以先看看这篇基于 K-means 算法的负荷数据曲线聚类,讲得还蛮接地气。要是你偏好 Python,那推荐你翻下Python 实现 K-Means 聚类算
算法与数据结构
0
2025-06-25
研究报告-基于聚类分析的K-means算法研究及应用
深入探讨了聚类分析及其算法的性能比较,结合儿童生长发育数据,详细阐述了改进的K-means算法在数据挖掘中的实际应用。
数据挖掘
14
2024-07-24
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means聚类算法实现
K-means 的聚类逻辑蛮清晰的,主要靠计算“谁离谁近”,把数据点分到最近的中心里。你要是手上有一堆样本,想看看有没有分组规律,用它还挺合适。孤立点也能得比较稳,结果还挺有参考价值。
K-means的实现过程不算复杂,核心就两个步骤:先随机选中心,不停更新,直到不再变。嗯,像在调频收音机,调到信号位置为止。要注意初始中心点选得不好,聚类效果就偏了。
如果你是用Python写的,可以直接撸个小脚本试试,比如下面这样:
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
别的语言也有,
数据挖掘
0
2025-07-01
信用卡数据集K-means聚类分析
信用卡数据集挺适合用来做聚类,是做客户细分和制定营销策略时。数据集包含了大约 9000 名信用卡持有人的行为数据,时间跨度是过去 6 个月,涵盖了 18 个不同的行为变量。通过这些数据,你可以对客户进行聚类,了解他们的使用习惯、消费模式等,进一步优化服务或者营销活动。你可以尝试使用 K-means 聚类算法,来识别不同类型的客户群体哦。
统计分析
0
2025-06-23
Python实现K-Means聚类算法
介绍了如何使用Python编写K-Means聚类算法的实现代码,适合学习和参考。
算法与数据结构
11
2024-07-13
详解K-means聚类算法.pdf
K-means聚类算法是一种基于分割的无监督学习方法,将数据集分成K个互不重叠的簇,以使每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。该算法简单高效,广泛应用于数据分析和挖掘领域。详细算法步骤包括随机初始化簇中心、将数据点分配到最近的簇、更新簇中心以及迭代优化过程。其原理在于通过迭代优化达到稳定的簇分布。K-means聚类算法简明易懂,执行效率高,因此在多个领域得到广泛应用。
算法与数据结构
16
2024-08-08
R语言K-means聚类算法
R 语言的 K-means 聚类算法,用起来真挺顺手的。语法简单,逻辑清晰,适合数据刚起步的你。kmeans()这个函数几乎一看就懂,配合像factoextra这样的可视化包,效果也直观。安装包推荐你先装好fpc和factoextra,再加上ggplot2一起用,调试聚类数量、看图都方便。聚类逻辑也不复杂:初始中心、计算距离、更新再分配,反复几轮,直到结果稳定。哦对了,记得标准化下数据,用scale()就行,能避免变量尺度影响结果。不然你聚类中心再准也白搭。还有,默认欧式距离,适合连续变量,分类变量得换思路。整个流程在 R 里实现起来蛮流畅的,适合信用卡用户、地理数据之类的多维数据。要是想对照
算法与数据结构
0
2025-07-05
K-means聚类算法的MATLAB实现
K-means是一种传统的计算K均值的聚类算法,因其计算复杂度低,而成为应用最为普遍的一种聚类方法。该算法通过将数据分为K个簇,使得每个簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。K-means算法的核心思想是迭代地调整每个簇的中心(即质心),直到聚类结果收敛。
Matlab
19
2024-11-05