基于数据挖掘的入侵检测系统模型的设计思路挺实用的,适合搞网络安全的你参考一下。分布式结构+数据挖掘,监控范围大,响应也快,能发现一些隐藏得比较深的攻击行为。关联规则和聚类算法结合用,检测准确率还不错。
分布式入侵检测系统的组件分得挺清楚:基于主机的收日志,基于网络的抓流量,中控协调。嗯,这样设计的好处是扩展起来不费劲,大网络环境下挺稳当的。
数据挖掘这块重点是关联规则挖掘和聚类,前者负责提规则,后者干脆识别新型攻击。简单说,就是先找规律,再学会分类,提升检测能力。
如果你打算在大规模网络里搞安全防护,可以借鉴一下论文里提到的分布式架构思路,别忘了数据预和知识库更新这块也挺关键哦。