BP 神经网络作为经典的人工神经网络算法,依然在多领域中有着广泛应用。神经网络模型的训练速度受参数设置影响较大。常用的几个参数包括学习率动量因子形状因子以及收敛误差界值等。比如,学习率决定了每次调整时参数更新的步幅,动量因子则加速梯度下降方向的收敛,减少震荡,形状因子控制模型的复杂度,从而影响收敛速度。针对这些参数,调整得当不仅可以提升训练效率,还能避免过拟合。建议在调整时,可以从小步幅的学习率和适中的动量因子开始,逐步调整以找到最佳组合。