这套 Matlab 程序挺适合用来非线性最小二乘法问题,是用LM 算法求解 F(x)=0 的方程组。程序支持未知数与方程个数不相等的情形,简单易用,适合在优化问题中做调试。
其中,有一些常见的优化方法比如最速下降法、牛顿法、共轭梯度法等等,程序的模块化设计让你可以快速拿来就用。比如,armijo.m就是 Armijo 准则的实现,了一个比较可靠的线搜索方法。
而且,这些程序都基于Armijo 非精确线搜索
,对于大多数优化问题有。最棒的是,你可以轻松地根据需求调整相关算法,像是使用frcg.m
来进行 FR 共轭梯度法优化。
整体来说,这些工具不仅能你在 Matlab 中一些复杂的数学模型,还能让你更有效率地完成非线性最优化任务。嗯,如果你在做相关算法实现的时候遇到问题,试试这些程序会有的。
MATLAB非线性最小二乘法L-M算法求解器
相关推荐
线性回归最小二乘法求解
采用最小二乘法求解线性回归模型的参数,目的是使模型拟合数据点时,残差平方和最小。
算法与数据结构
13
2024-05-01
解决非线性最小二乘法拟合难题
matlab中的非线性最小二乘法拟合问题可以通过以下matlab代码来深入学习。
Matlab
17
2024-07-25
基于非负最小二乘法求解线性方程
非负最小二乘法 (NNLS) 是一种用于求解线性方程组的数值方法,尤其适用于解向量需满足非负约束的情况。
给定线性方程组 A * x = b,NNLS 寻找向量 x,在满足 x 的所有元素非负 (x >= 0) 的前提下,最小化残差平方和 ||A * x - b||^2。
相比于传统的最小二乘法,NNLS 引入非负约束,能够在信号处理、图像分析等领域提供更具物理意义和可解释性的解。
Matlab
16
2024-05-30
matlab程序实现最小二乘法
关于目标跟踪的最小二乘方法在Matlab中的实现,其坐标是基于三维空间。参考文献为《信息融合中多平台多传感器的时空对准研究》第28页至33页。
Matlab
16
2024-10-03
MATLAB实现偏最小二乘法
这里是偏最小二乘法的MATLAB代码实现示例。使用此代码,您可以轻松实现数据的回归分析,并得到精准的模型参数。
Matlab
13
2024-11-02
最小二乘法Matlab模型拟合代码
最小二乘法的系统辨识代码,写得还蛮清爽的,用Matlab跑起来效率也不错。整个流程标准,从数据读取到模型拟合,基本一步到位,挺适合新手试水。
系统辨识用最小二乘的方式做,优势就在于简单直接,适合那种已知输入输出对、想快速搞个线性模型出来的场景。响应也快,代码也不啰嗦。
里面的结构其实不复杂,核心就在几行inv和矩阵乘法,懂点线性代数的你一看就明白。想深挖的,可以结合下SVM 仿真或者非线性最小二乘,配合用效果更好。
哦对了,多项式拟合那篇也不错,风格跟这套代码挺像的,可以顺手参考下。
如果你在搞OFDM、信道估计之类的通信类项目,也能套这套思路,相关的代码资源都整理得挺全的,别错过了。
建议你
Matlab
0
2025-07-01
多种最小二乘法综述及Matlab模拟
综合了多种最小二乘法,包括递推最小二乘算法、遗忘因子最小二乘法、限定记忆最小二乘法、偏差补偿最小二乘法、增广最小二乘法、广义最小二乘法等,并提供了Matlab仿真示例。
Matlab
15
2024-09-23
Matlab非线性最小二乘优化
如果你需要做一些涉及到非线性最小二乘优化的工作,这份 Matlab 资源包应该挺适合你的。里面的源码已经过严格测试,可以直接拿来跑,免去了调试的烦恼。 Matlab 的优势都知道,强大的数学和科学函数库,尤其适合做数值计算、信号、优化等任务。你可以快实现和测试各种算法,像非线性拟合这种问题,Matlab 的工具箱能有效你提高效率。 除了能实现高效的计算,Matlab 的可视化功能也不错,能把算法的结果以图形的方式清晰展示出来,让你在调试时一目了然。而且开发环境也蛮直观的,学习起来不需要太多负担。如果你想进一步加速算法的计算过程,Matlab 还支持并行计算,简直是开发者的福音。 ,如果你正在做
Matlab
0
2025-08-15
Matlab实现最小二乘法曲线拟合算法
通过Matlab实现最小二乘拟合曲线,可以有效地通过给定数据点生成一条最优的拟合曲线。在Matlab中,调用最小二乘法的核心思想是通过最小化误差平方和来找到最合适的函数。具体实现时,可以使用Matlab内置的polyfit函数,或自定义代码来解线性方程组。使用这些方法,能够让用户深入理解最小二乘法的原理以及如何在Matlab中高效应用该算法。
Matlab
8
2024-11-05