matlab中的非线性最小二乘法拟合问题可以通过以下matlab代码来深入学习。
解决非线性最小二乘法拟合难题
相关推荐
线性回归最小二乘法求解
采用最小二乘法求解线性回归模型的参数,目的是使模型拟合数据点时,残差平方和最小。
算法与数据结构
13
2024-05-01
最小二乘法Matlab模型拟合代码
最小二乘法的系统辨识代码,写得还蛮清爽的,用Matlab跑起来效率也不错。整个流程标准,从数据读取到模型拟合,基本一步到位,挺适合新手试水。
系统辨识用最小二乘的方式做,优势就在于简单直接,适合那种已知输入输出对、想快速搞个线性模型出来的场景。响应也快,代码也不啰嗦。
里面的结构其实不复杂,核心就在几行inv和矩阵乘法,懂点线性代数的你一看就明白。想深挖的,可以结合下SVM 仿真或者非线性最小二乘,配合用效果更好。
哦对了,多项式拟合那篇也不错,风格跟这套代码挺像的,可以顺手参考下。
如果你在搞OFDM、信道估计之类的通信类项目,也能套这套思路,相关的代码资源都整理得挺全的,别错过了。
建议你
Matlab
0
2025-07-01
VB最小二乘法多项式拟合
VB 写的最小二乘法多项式拟合,用起来还挺顺手的。逻辑清晰,思路也不绕,适合快速上手搞点数据拟合的活。你要是不想打开 Matlab 那一堆窗口,这个方案就香。
多项式阶数可控,手动设置就行,最高几阶都能试。拟合后的曲线数据输出也方便,直接拿来画图、都没问题。对于想在小工具里集成拟合算法的朋友,这份代码就蛮合适。
VB 虽然不时髦了,但有些老系统或内嵌开发还真离不开它。这份代码结构比较清楚,改点参数、接个 UI,几分钟搞定。
如果你是 Matlab 用户,也可以看看Matlab 版本的拟合算法,或者需要更复杂一点的可以参考结合龙贝格算法的实现。
哦对了,别忘了确认输入数据格式,建议是二维数组形式
算法与数据结构
0
2025-07-01
RTK球心拟合最小二乘法与MATLAB实现
在RTK球面拟合的研究中,基于球心拟合的最小二乘构造原理,作者使用MATLAB语言编写了球心拟合程序。为验证拟合模型的合理性,作者通过数值模拟方式人工构造了一组球数据,随后利用编写的拟合模型进行球心拟合。结果表明,最大拟合误差优于1*10^-4mm,验证了球心拟合模型的合理性和准确性。
Matlab
10
2024-11-05
最小二乘法曲线拟合实用工具
本工具由 Delphi 和 Access 数据库编写,可对测量数据进行最小二乘法曲线拟合。
该工具提供拟合系数、最小均方根差和拟合曲线。它还可存储拟合数据和系数。
使用本工具,用户可以轻松地拟合曲线并获取相关信息。
Access
16
2024-05-23
线性最小二乘拟合
线性最小二乘拟合采用多项式拟合,MATLAB 提供 polyfit 函数用于拟合 m 次多项式,返回系数向量 a。拟合后,可以使用 polyval 函数计算指定点的多项式值 y。
算法与数据结构
11
2024-04-29
最小二乘法在曲面拟合中的应用
最小二乘法是一种常用的数学算法,特别适用于曲面拟合。通过使用Matlab解线性方程组,可以得到拟合曲面的各项系数。
Matlab
10
2024-07-21
Matlab实现最小二乘法曲线拟合算法
通过Matlab实现最小二乘拟合曲线,可以有效地通过给定数据点生成一条最优的拟合曲线。在Matlab中,调用最小二乘法的核心思想是通过最小化误差平方和来找到最合适的函数。具体实现时,可以使用Matlab内置的polyfit函数,或自定义代码来解线性方程组。使用这些方法,能够让用户深入理解最小二乘法的原理以及如何在Matlab中高效应用该算法。
Matlab
8
2024-11-05
matlab程序实现最小二乘法
关于目标跟踪的最小二乘方法在Matlab中的实现,其坐标是基于三维空间。参考文献为《信息融合中多平台多传感器的时空对准研究》第28页至33页。
Matlab
16
2024-10-03