Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
算法与数据结构
正文
声纳图像机器学习分类全套资料
算法与数据结构
22
RAR
3.23MB
2024-05-23
#机器学习
# 声纳图像
# 分类
# 数据集
# 教程
学习如何利用声纳图像进行机器学习分类?这份资料库包含了你所需的一切:
精选声纳数据集
详细的数据提取方法说明
机器学习分类全过程记录,即使是新手也能轻松上手
相关推荐
机器学习算法简介及分类
机器学习的发展中,有一条被称为“没有免费的午餐”定理。简单来说,它指出没有一种算法能够解决所有问题,尤其是在监督学习领域。
算法与数据结构
16
2024-07-17
分类算法对比-机器学习 PPT
比较 Kotsiantis 等人 (2007) 和 Hastie 等人 (2009) 的分类算法 阐述算法原理、优缺点以及适用场景
算法与数据结构
14
2024-05-25
经典机器学习分类算法详解
将详细介绍机器学习分类算法的相关内容:1. Python及其机器学习库的安装方法;2. 数据库中数据的获取与处理技巧;3. 对数据库中数据应用多种机器学习算法进行分类预测,并比较它们的准确性;4. 最终选定最优算法进行最终预测。
算法与数据结构
9
2024-07-25
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
17
2024-05-01
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
数据挖掘
18
2024-05-25
机器学习与数据挖掘中的图像分类数据集
在机器学习和数据挖掘领域,图像分类是一项基础且关键的任务,涉及计算机视觉和模式识别。这个专为研究而设计的“猫狗分类数据集”包含猫和狗两类图像,用于训练模型并评估其性能。数据集已预先划分为训练集和测试集,便于开发者进行模型训练和泛化能力验证。数据预处理阶段包括图像缩放、归一化和增强等步骤,以提高模型训练效率。特征提取使用卷积神经网络(CNN)等方法,帮助模型从图像中提取有意义的特征。常用的模型包括SVM、随机森林以及经典的深度学习模型如AlexNet和ResNet,这些模型通过反向传播和梯度下降进行训练优化。模型评估通过准确率、精确率、召回率和F1分数等指标进行,以验证模型在测试集上的预测效果。
数据挖掘
18
2024-07-17
图像分类中的机器学习技术-基于k-means算法的应用
这份资源涉及机器学习与数字图像处理,重点在于利用k-means算法进行图像分类。包括分类图像数据集及Matlab实现的图像分类程序。
Matlab
12
2024-07-31
中国科学技术大学机器学习课程资料
这份资料包含中国科学技术大学机器学习课程的PPT、课后习题答案、往年考试试卷以及数据挖掘导论和推荐系统相关的PPT,授课教师为陈恩红老师。
数据挖掘
14
2024-05-21
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
Matlab
18
2024-07-23