感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
机器学习资源
相关推荐
Spark机器学习资源下载
Spark作为大数据处理领域的主要框架,以其高效且易用的特点受到开发者的青睐。在机器学习领域,Spark通过其MLlib库提供了广泛的算法支持,使大规模数据上的模型训练和预测变得更加便捷。本资源“MachineLearningSpark.zip”专为学习者提供,帮助理解和应用Spark进行机器学习。MLlib库涵盖了监督学习(如逻辑回归、决策树、随机森林等)和无监督学习(如K-Means、PCA等)算法,基于分布式计算处理PB级别数据。通过DataFrame和RDD,Spark提供了高效的数据处理和并行计算能力。资源包含示例代码、数据集、说明文档和机器学习管道示例,帮助学习者掌握数据加载、特征
spark
15
2024-10-17
机器学习:课件、数据与代码资源
作为计算机科学与信号信息处理领域的热门研究方向,机器学习在数据挖掘、大数据分析、视频技术、音频技术以及智能机器人技术等多个领域扮演着关键核心与支撑技术的关键角色。本资源提供的课件与代码涵盖了学生需要了解的主流机器学习理论、方法及算法,并结合应用范例帮助学生掌握监督学习、非监督学习、统计学习、计算学习以及贝叶斯学习等基本学习理论、模型算法及应用。
数据挖掘
17
2024-05-27
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
数据挖掘
18
2024-05-25
Matlab集成C代码的机器学习资源指南
这篇文章列出了一些关于机器学习、数据科学和深度学习的顶级库、框架和工具,为初学者提供指南。虽然大多数资源集中在Python上,但也包含其他语言的工具。Apache Spark MLib是其中之一,适用于与Python和R的互操作。
Matlab
13
2024-08-28
ScalaMl:探索机器学习算法的源代码资源
ScalaMl: 面向机器学习的 Scala
版本 0.99.1
© Patrick Nicolas,版权所有,2013-2016
概述
ScalaMl 的源代码为软件开发人员提供了一个关于机器学习算法差异的广泛视角。它面向具备一定 Scala 编程语言基础和基本统计知识的读者,并不要求读者具备数据挖掘和机器学习的经验。
源代码指南
源代码使用指南在 SourceCodeGuide.html 文档中进行详细说明。
示例应用
代码示例主要与投资组合管理和交易策略相关。
深入学习
对于对数学或库中实现的技术感兴趣的读者,建议参考以下书籍:
“机器学习:概率论” K. Murphy-麻省理工学院出
数据挖掘
19
2024-05-19
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
Matlab
18
2024-07-23
矩阵学习与机器学习衔接
吴恩达矩阵学习是针对机器学习所设计的,可以帮助你更好地理解线性代数在机器学习中的应用,进而理解更复杂的机器学习概念。
算法与数据结构
12
2024-05-01
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略
算法与数据结构
18
2024-05-25
机器学习与Spark指南
此指南提供机器学习与Spark的清晰介绍,涵盖基础概念、技术和实用示例。
spark
11
2024-05-15