MATLAB时间序列预测方法概述
MATLAB中的经典时间序列预测方法包括自回归(AR)、移动平均线(MA)、自回归移动平均线(ARIMA)等多种技术。这些方法已经在各行业展示出色的分类和预测能力。在探索更高级的机器学习方法之前,建议首先熟悉这些经典技术,确保数据准备充分且方法正确。详细介绍了每种方法的实现步骤和使用提示,是入门时间序列预测的理想起点。
Matlab
11
2024-08-23
用于时间序列预测的SAS应用
SAS应用于时间序列预测,提供完整的书签,并裁剪适合月度版本。
算法与数据结构
11
2024-08-08
混沌时间序列分析与预测工具箱开源版
混沌时间序列与预测工具箱的开源版,功能真挺全的,从生成混沌序列到 RBF、Volterra 预测一整套全给你安排上了。用ChaosAttractorsMain_Lorenz.m就能搞出 Lorenz 吸引子,点一下就能跑。哦对了,像DelayTime_OthersMain_AutoCorrelation.m这种求延迟时间的脚本也都有,拿来直接用就行。
工具箱的结构也清晰,每个步骤都拆开写了,比如求Lyapunov指数你就看LargestLyapunov_RosensteinMain_LargestLyapunov_Rosenstein1.m这几个脚本,方法还挺细的,小数据量啥的也考虑到了。调试
算法与数据结构
0
2025-06-14
应用时间序列分析:建模和预测的实践指南
特伦斯·C·米尔斯撰写的《应用时间序列分析:建模和预测的实践指南》已提供高清原版PDF,便于阅读。
算法与数据结构
23
2024-04-30
XGBoost与ForecastXGB的时间序列预测技术
《XGBoost与ForecastXGB的时间序列预测技术》是一篇关于如何利用ForecastXGB包进行时间序列预测的文章。详细介绍了如何利用XGBoost算法结合Rob Hyndman的Forecast包处理时间序列数据,实现精准的预测功能。ForecastXGB包提供了简便的API,有效地处理时间序列数据中的季节性变化等因素。
算法与数据结构
17
2024-08-28
股票时间序列分析教程
如果你对股票数据感兴趣,这份压缩包真的值得一看。它从基础的时间序列到高阶的机器学习预测,覆盖面相当广。比如,你能学到如何用ARIMA模型抓住趋势,也能探索用LSTM复杂的非线性数据。压缩包里还提到了如何清洗和预数据,什么缺失值、标准化这种常见问题都有讲到。最关键的是,还了不少实操代码和案例。无论你是想预测股票走势,还是优化投资策略,这份资料都挺适合你。
数据挖掘
0
2025-06-18
奇异谱分析(SSA)方法在时间序列预测中的应用
想做时间序列预测?用奇异谱方法(SSA)试试吧!这是一种纯数学的时间序列向后预测方法,简单易用,又能给出不错的预测效果。我自己也试过,做了一些测试,结果还蛮惊艳的。不过,需要注意的是,它对非平稳序列和长时序的预测效果还不完全确定,所以你可以在自己的项目中验证一下,看看是否适合。毕竟,方法再好,也得合适才行!我整理了实现代码,感兴趣的可以拿去试试。另外,如果你对时间序列预测有兴趣,下面这些资源也有。你可以看看:时间序列预测法、MATLAB 时间序列预测方法概述,它们都挺实用的。
算法与数据结构
0
2025-06-17
Cassandra时间序列分析结合NoSQL、Bokeh和Prophet进行股票预测
哈佛扩展学校大数据分析课程的最终项目由Galina Alperovich完成于2017年5月。Cassandra NoSQL在处理时间序列数据方面有着广泛的应用。Cassandra的数据模型特别适合按顺序处理数据,具备高速写入、跨节点复制和高可用性等特点。与传统的关系型数据库不同,Cassandra无需执行SQL连接、分组等标准操作。本项目展示了如何利用Cassandra进行财务时间序列分析,强调其处理顺序数据的自然优势。此外,我们提供了轻量级Web应用程序,用户可选择美国3000家公司之一,并查看其股票数据的时间序列图表,进行统计分析和实时监测。
NoSQL
9
2024-09-13