如果你对股票数据感兴趣,这份压缩包真的值得一看。它从基础的时间序列到高阶的机器学习预测,覆盖面相当广。比如,你能学到如何用ARIMA模型抓住趋势,也能探索用LSTM复杂的非线性数据。压缩包里还提到了如何清洗和预数据,什么缺失值、标准化这种常见问题都有讲到。最关键的是,还了不少实操代码和案例。无论你是想预测股票走势,还是优化投资策略,这份资料都挺适合你。
股票时间序列分析教程
相关推荐
Cassandra时间序列分析结合NoSQL、Bokeh和Prophet进行股票预测
哈佛扩展学校大数据分析课程的最终项目由Galina Alperovich完成于2017年5月。Cassandra NoSQL在处理时间序列数据方面有着广泛的应用。Cassandra的数据模型特别适合按顺序处理数据,具备高速写入、跨节点复制和高可用性等特点。与传统的关系型数据库不同,Cassandra无需执行SQL连接、分组等标准操作。本项目展示了如何利用Cassandra进行财务时间序列分析,强调其处理顺序数据的自然优势。此外,我们提供了轻量级Web应用程序,用户可选择美国3000家公司之一,并查看其股票数据的时间序列图表,进行统计分析和实时监测。
NoSQL
9
2024-09-13
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
21
2024-05-24
Matlab时间序列分析代码
时间序列数据分析的Matlab实现代码。
Matlab
12
2024-07-27
R语言时间序列分析
利用全国卷烟销量数据,采用R语言进行时间序列分析。分别构建ARIMA季节时间序列模型、Holtwinters指数平滑模型,并评估模型准确性。提供完整R代码和数据集。
算法与数据结构
16
2024-05-13
时间序列分析资源包
本资源包包含教学PPT和MATLAB实现代码,详细介绍了时间序列的基本理论。时间序列是按时间顺序排列的统计指标数列,主要用于基于历史数据预测未来走势。经济数据通常以时间序列形式呈现,时间单位可以是年、季度、月等。
Matlab
13
2024-09-28
数学建模中的时间序列分析
探讨时间序列分析的基础知识,参考了《应用时间序列分析》的前三章内容。使用Python进行建模,适合数学建模中对时间序列分析的初学者快速入门与实际应用。文章简单易懂,侧重于实际操作。
统计分析
9
2024-07-17
ARMA模型时间序列分析Python代码
使用Python代码对时间序列数据进行ARMA模型分析。
统计分析
22
2024-04-29
基于ARMA模型的时间序列分析
使用ARMA模型对海浪高度数据进行时间序列分析及预测拟合,代码中有详细注释,便于学习理解。
算法与数据结构
12
2024-07-13
地学中的时间序列分析技术
时间序列(Time Series)在地学研究中广泛应用,涉及时域和频域两种基本形式。时域分析具有时间定位能力,但频域分析如Fourier变换则更适合处理非平稳序列,如河川径流、地震波、暴雨等。这些现象具有趋势性、周期性和随机性特征,需要多时间尺度的分析方法。
Matlab
17
2024-07-16