Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
基于贝叶斯方法的序列模式挖掘
数据挖掘
26
PDF
216.15KB
2024-05-25
#序列模式挖掘
#贝叶斯方法
#噪声数据
#概率论模型
#复杂度分析
序列模式挖掘算法
本算法结合贝叶斯学习,简化挖掘过程,可处理不完备、溢出及噪声数据。
概率模型
使用概率论模型描述序列,并利用贝叶斯知识辅助。
算法性能
经复杂度分析和性能验证,该算法具有优越性。
相关推荐
贝叶斯公式与朴素贝叶斯
贝叶斯公式描述了事件在已知条件下发生的概率。朴素贝叶斯是一种机器学习算法,它假设特征在给定类的情况下相互独立。
算法与数据结构
18
2024-05-13
基于贝叶斯方法的手写数字识别
这份资源提供了一个手写数字分类器的设计方案,并附带源代码。该分类器利用概率统计中的贝叶斯决策理论,能够有效识别0到9的手写数字。
Matlab
16
2024-05-19
贝叶斯统计方法导论
本书帮助学生熟悉贝叶斯理论的基本概念,并使他们能够快速地使用贝叶斯计算工具进行数据分析。
算法与数据结构
12
2024-06-17
贝叶斯学派观点6.4贝叶斯估计
贝叶斯估计的思路挺的,属于那种一上手就能让人眼前一亮的类型。它不把概率当成现实中发生的频率,而是当成你对某件事的信心值——比如你觉得模型参数是多少,就可以用分布来表达。参数不再是死板的定值,而是有了“性格”的变量,你可以给它们分布,做推断,甚至算个区间,挺有弹性的。点估计、区间估计这些东西在贝叶斯里用起来顺手多了。如果你是搞机器学习、数据挖掘或者对概率建模感兴趣的前端或工程类选手,那这个资源还蛮值得一看。顺手放几个还不错的相关文章,比如状态估计的 Matlab 实现,或者是区间估计在 ANSYS 工程里的应用,都是实用的例子。建议你在用的时候注意一点,贝叶斯方法虽然灵活,但计算量也不小,尤其是
数据挖掘
0
2025-06-18
基于贝叶斯方法的中医症证分析研究
中医“症-证”分析在中医诊断学和中医证候分析中非常重要。该文以数据挖掘技术为手段对选取的古方进行“症-证”研究,对古方的主治症状进行规范,挖掘“症-证”之间的关系,从而判定方剂的主治证、兼治证。为了挖掘中医“症-证”之间的关系,提出了基于KNN的挖掘算法和基于贝叶斯的挖掘算法。对比实验证明,基于贝叶斯方法正确率达到65.76%,高于KNN的62.50%。
数据挖掘
9
2024-10-31
贝叶斯数据挖掘工具Matlab实现
贝叶斯是数据挖掘领域的经典算法,广泛应用于分类、预测等任务。这个资源了一个基于 Matlab 实现的贝叶斯数据挖掘工具,操作起来还挺方便的。通过使用它,你可以轻松实现贝叶斯分类,甚至进行图像识别。对于有一定编程基础的开发者,利用这个工具进行数据是个不错的选择。你可以参考相关的文档,快速上手这款工具。比如,Matlab 的工具包已经包含了多你需要的功能,实用又高效。如果你想深入了解贝叶斯分类算法的应用,也可以查阅一些相关的技术文章,进一步提升自己的技术水平。例如,关于贝叶斯公式与朴素贝叶斯的详细,以及 Java 实现的贝叶斯图像识别分类算法,都能你更好地理解和应用这个算法。
数据挖掘
0
2025-06-14
基于贝叶斯公式的随机过程滤波
贝叶斯滤波是一种基于贝叶斯公式的随机过程滤波方法,用于估计系统的状态。其核心思想是利用先验信息和观测数据,通过贝叶斯公式更新对系统状态的后验概率分布。
统计分析
13
2024-05-12
学习贝叶斯网络
贝叶斯网络概述与核心概念####标题解读:《学习贝叶斯网络》这本由Richard E. Neapolitan撰写的书籍是贝叶斯网络统计学方法的重要著作。它不仅适用于统计学专业的学生,也是数据挖掘和机器学习领域研究者们的宝贵资源。 ####描述分析:贝叶斯网络全景本书全面介绍了贝叶斯网络的基础理论及其应用。对于从事数据挖掘或相关领域的学习者来说,《学习贝叶斯网络》是一本不可或缺的参考书籍。其内容详实、案例丰富,有助于读者深入理解贝叶斯网络的基本原理以及如何将其应用于实际问题中。 ####关键知识点详解#####基础概率论- 概率函数与空间:书中首先介绍了概率论的基础知识,包括概率函数的定义、概率
数据挖掘
17
2024-09-16
基于动态贝叶斯动作网的监控视频数据挖掘
监控视频数据挖掘:从姿势识别到行为理解 监控视频数据挖掘主要包括视频数据预处理、视频特征数据提取以及视频模式发现与表示三个层次。本研究聚焦于监控视频中的人体姿势识别和行为理解,并提出了一种基于二维身体部位表示法的动态贝叶斯动作网(DBAN)框架。 DBAN框架的优势: 提高人体姿势定位的准确性 提升行为识别的精度 实验结果验证了该方法的有效性。
数据挖掘
11
2024-05-25