针对移动终端资源受限问题,提出一种低消耗的基于数据挖掘的FMIPv6切换算法(LCTWP-FMIPv6)。该算法通过缩减移动轨迹数据集扫描范围,降低数据挖掘过程的计算量和存储空间占用,并在Android移动终端上实现。实验结果表明,LCTWP-FMIPv6算法在保障移动切换平稳高效的同时,显著减少数据挖掘过程耗时。
面向Android终端的低消耗数据挖掘驱动FMIPv6切换算法
相关推荐
UTRA软切换算法中软切换概率与阈值的关系
这个简单的m文件描述了UTRA软切换算法中软切换概率与软切换阈值之间的函数关系。它通过计算启用软切换的小区面积与总小区面积的比率来推导这一关系。
Matlab
8
2024-09-28
基于数据挖掘的移动终端换机模型
目前,移动终端已成为运营商维系用户、拓展市场的战略重心。提升移动终端销量、扩大终端规模是各运营商的工作重点。利用数据挖掘技术,从用户属性、终端使用信息、终端搜索访问信息等多个维度出发,挖掘大量用户行为数据的价值。建立了终端换机模型,包括基于决策树算法的用户换机倾向识别模型和基于聚类算法的终端推荐模型。这些模型可以帮助实现移动终端的精准营销。
数据挖掘
8
2024-10-12
面向高效数据挖掘的直接判别模式挖掘
DDPMine 运用 branch-and-bound 搜索策略,无需生成完整模式集,直接挖掘出区别性模式。该方法摒弃了从海量数据中选取最优模式的传统做法,引入以特征为中心的策略,通过不断减少训练实例,在逐步缩减的 FP 树上依次生成区别性模式。
数据挖掘
7
2024-05-27
面向客户服务的文本数据挖掘
面向客户服务的文本数据挖掘
概述
文本数据挖掘在客户服务领域应用广泛,可以用于分析客户反馈、自动化客服流程以及提供个性化服务。
关键技术
文本预处理: 包括文本清洗、分词、词干提取等步骤,为后续分析做准备。
情感分析: 分析客户情绪,识别正面、负面和中性评价,帮助企业了解客户满意度。
主题模型: 从大量文本数据中提取关键主题,例如产品功能、服务质量等,帮助企业了解客户关注点。
文本分类: 将文本数据自动分类到预定义的类别,例如投诉、咨询、建议等,方便企业进行 targeted 处理。
应用场景
客户反馈分析: 分析客户评论、邮件、社交媒体信息,了解客户需求和痛点。
智能客服: 利用聊天机
数据挖掘
13
2024-05-25
数据挖掘算法
本项目汇集了我的数据挖掘研究成果。其中包括经典的事务挖掘算法 Apriori 和 FP-Growth。此外,还涵盖了共置模式挖掘算法,这是我研究生学习的重点领域。
数据挖掘
20
2024-05-14
数据挖掘算法
数据挖掘通过从大量数据中提取模式来揭示隐藏的知识,这些模式有效、新颖、有用、可靠且可理解。
数据挖掘
9
2024-05-16
数据挖掘经典算法
Apriori算法
FP-Growth算法
K-Means算法
KNN算法
Naïve Bayes算法
SVM算法
决策树算法
关联规则算法
回归算法
聚类算法
数据挖掘
12
2024-04-30
数据挖掘常用算法
涵盖了常用的数据挖掘算法,深入浅出的介绍了它们的原理和应用。
数据挖掘
16
2024-04-30
数据挖掘算法入门
掌握数据挖掘算法是成为数据分析专家的关键。这篇文章系统讲解了十大经典算法,助你轻松理解数据挖掘的基本原理。
数据挖掘
20
2024-05-13