利用Gabor特征提取和支持向量机(SVM)算法构建人脸检测模型,实现人脸识别和定位。
支持向量机人脸检测模型构建
相关推荐
基于支持向量机的人脸识别matlab代码
使用matlab编写的支持向量机人脸识别代码,基于先进的算法进行实现。支持向量机技术在人脸识别领域展现出卓越的性能和准确度,为图像识别研究提供了重要工具。
Matlab
21
2024-08-22
基于支持向量机的人脸识别matlab代码.zip
使用支持向量机技术进行人脸识别的matlab代码
Matlab
14
2024-07-19
MATLAB平台上的支持向量机印章检测技术
在MATLAB平台上,利用支持向量机算法实现了对印章的提取和检测。
Matlab
18
2024-08-22
Python支持向量机实现葡萄酒质量检测
在本项目中,Python_Support_Vector_Machine 的目标是帮助一家葡萄酒分销公司检测低质量的“欺诈”葡萄酒样品。该公司近期遭遇供应商欺骗,将廉价低质葡萄酒作为高品质产品进行销售。通过对不同葡萄酒样品进行化学分析,我们利用支持向量机(SVM)创建机器学习模型,以识别和区分葡萄酒的质量。
项目数据来源于 P. Cortez、A. Cerdeira、F. Almeida、T. Matos 和 J. Reis 的研究,该研究通过理化特性进行数据挖掘,以对葡萄酒喜好进行建模。此数据为我们提供了检测不同品质葡萄酒的理化参数,用以支持模型的训练与测试。
样品数据分析和处理
我们将对提供
数据挖掘
12
2024-10-31
支持向量机分类算法
SVM,挺牛的一个机器学习算法。简单来说,它通过寻找一个超平面来划分数据,目标是让两类数据的间隔最大化,最终提升模型的泛化能力。对于小样本数据集有用,常见于文本分类、图像识别这些领域。最有意思的部分是它的核技巧,能把非线性问题变成线性问题,这样就能更好地复杂的数据集。
SVM 有个核心原则叫做最大间隔,就是通过选取一个间隔最大的超平面来进行分类,这样能有效降低过拟合的风险。而且,支持向量离决策边界越近,它对分类结果的影响越大。所以,训练时找到合适的支持向量尤为重要。
说到核技巧,SVM 用得挺多的。最常用的包括线性核、多项式核和径向基函数核(RBF),每种核函数适应不同的数据情况,比如 RBF
数据挖掘
0
2025-06-25
基于GSWOA算法的支持向量机(SVM)参数优化及预测模型构建
基于 GSWOA 算法的 SVM 参数优化,听起来挺有意思吧?如果你也对机器学习有点了解,是支持向量机(SVM),这篇文章就适合你了。通过鲸鱼优化算法(GSWOA)来优化 SVM 的两个核心参数——惩罚因子c和核函数宽度g,能显著提升模型的预测精度。文中不光有详细的算法原理,还包括了一些实用的代码示例,方便你在实际工作中快速上手。只要你对 SVM 有所了解,就能轻松理解其中的操作和技巧。其实,优化后的 SVM 模型在实际任务中的表现还不错,尤其是在预测精度上,给了多研究者和开发者不少启发。如果你想了解 GSWOA 在 SVM 中的应用,或者想提升你自己 SVM 模型的精度,不妨试试这篇文章哦。
MongoDB
0
2025-06-16
SVM支持向量机笔记
李航老师的《统计学习方法》里的支持向量机部分,笔记整理得还蛮清楚的,适合你刚入门 SVM 或者想快速回顾重点的时候看看。内容不啰嗦,图示也挺直观,看起来不会头大。支持向量机(SVM)这种算法吧,虽然看着数学味儿挺浓,其实搞懂了核函数的核心逻辑,多分类任务都能用得上,比如文本分类、人脸识别这些场景就挺常见的。笔记作者整理了不少实用资源,比如Matlab的代码示例、粒子群优化(PSO)调参数的案例,还有经典的鸢尾花数据集实验,比较全也蛮接地气,配合起来看学习效率更高。哦对了,如果你平时用Python,虽然这些代码是 Matlab 写的,但思路是一通百通的,逻辑和参数选择都能参考。你要是准备搞个毕业
算法与数据结构
0
2025-06-29
支持向量机源代码
支持向量机(SVM)二分类模型利用间隔最大的线性分类器定义于特征空间上,并以核技巧转化为非线性分类器。SVM学习策略的目标为间隔最大化,可转换为求解凸二次规划或最小化正则化合页损失函数。其学习算法则是求解凸二次规划的最优化算法。
算法与数据结构
12
2024-05-01
支持向量机学习系列三
支持向量机学习系列渐进式教程,希望对学习者有帮助!
数据挖掘
22
2024-05-25