大数据搜索与日志挖掘方案——ELK Stack:Elasticsearch Logstash Kibana(第2版).高凯的这本书是PDF格式,书签详细,内容丰富,是非常值得收藏的资料。
大数据搜索与日志挖掘方案——ELK Stack:Elasticsearch Logstash Kibana(第2版)
相关推荐
MongoDB 大数据权威指南(第2版)
深入掌握 MongoDB 大数据处理
本书紧跟 MongoDB 最新发展,涵盖了版本 2.2 的聚合框架和版本 2.4 的哈希索引等重要特性。由 10gen 的 David Hows 携手资深 MongoDB 开发者 Peter Membrey 和 Eelco Plugge 共同撰写,分享其宝贵经验和专业知识,助您成为 MongoDB 专家。
MongoDB
14
2024-04-29
Logstash:ELK 组件之数据收集引擎
Logstash 是一款开源的数据收集引擎,具备实时数据传输能力。它能够将来自不同来源的数据进行统一过滤,并根据开发者设定的规范输出到指定目的地。
算法与数据结构
16
2024-05-15
ELK堆栈Kibana汉化工具
【Kibana汉化包】是专为Kibana 6.X版本设计的语言本地化工具,为中文用户提供友好的界面体验。ELK堆栈中,Kibana作为重要组成部分,主要用于数据可视化和交互式探索,广泛应用于日志管理和分析领域。汉化包通过翻译按钮、提示信息、菜单选项等界面元素,使操作指示更加清晰易懂。安装和使用过程包括下载解压压缩包、“Kibana_Hanization-master”复制汉化文件到配置目录,修改配置文件设置默认语言为中文,然后重启Kibana服务。用户需注意汉化包与Kibana版本兼容性,并在需要时参考官方文档或社区寻求支持。
算法与数据结构
10
2024-09-14
大数据技术与应用实践指南(第2版)
随着信息技术的迅猛发展,大数据正成为各行业不可或缺的重要资源。本书详细探讨了大数据技术在实际应用中的创新和发展。读者将从中获得深入的技术理解和实践指导,助力其在信息化时代的前沿探索。
算法与数据结构
11
2024-07-14
ELK构建云端日志管理解决方案
随着各种软件系统日益复杂,特别是在云环境中部署后,传统的节点登录查看日志已经不再现实。安全性考量使得直接访问物理节点成为不可能。现今大规模软件系统普遍采用集群部署,每个服务启动多个相同的POD提供服务,每个容器产生独立的日志,使得分布式日志查看更加困难。在云时代,需要一个集中收集和分析日志的解决方案。收集后,可以进行各种统计分析,充分利用ELK等流行工具。
统计分析
10
2024-07-25
基于《大数据技术原理与应用(第2版)》的复习要点
大数据技术原理与应用 复习要点
第一章 绪论
大数据概念及特征
大数据发展历程与应用领域
大数据关键技术
第二章 大数据处理架构Hadoop
Hadoop生态系统组件
分布式文件系统HDFS
分布式计算框架MapReduce
资源管理系统YARN
第三章 分布式数据库HBase
HBase数据模型与架构
HBase读写流程
HBase应用场景
第四章 NoSQL数据库
NoSQL数据库概述
键值数据库Redis
文档数据库MongoDB
图数据库Neo4j
第五章 流数据处理技术
流数据处理概述
流数据处理框架Storm
流数据处理框架Spark Streaming
第六
算法与数据结构
17
2024-04-30
第2章大数据处理架构Hadoop
大数据处理架构Hadoop内容解析。
Hadoop
16
2024-05-13
深入理解ELK Stack的高级实战训练
通过本次课程,学员将深入掌握ELK Stack的高级应用技巧与实战经验,帮助他们在日常工作中更加高效地利用这一强大工具组合。课程内容涵盖了从数据收集到可视化分析的全过程,适合有一定基础的技术专业人士。
Hadoop
12
2024-07-18
ELK Stack中文指南:解析机器数据分析利器
ELK Stack近年来在机器数据分析和实时日志处理领域异军突起,成为开源解决方案中的佼佼者。
kafka
24
2024-05-12