这本书是关于分布式多智能体系统协作控制的英文原版,提供了Matlab程序的实现。
分布式多智能体系统的协作控制
相关推荐
Hadoop:分布式系统基石
Apache Hadoop 为用户提供了构建和运行分布式应用程序的平台,无需深入了解底层细节。Hadoop 的核心组件 HDFS(Hadoop 分布式文件系统)具备高容错性,可在低成本硬件上部署,并提供高吞吐量数据访问,适用于处理海量数据集的应用程序。HDFS 不强制要求遵循 POSIX 标准,支持以流式方式访问文件系统数据。
Hadoop
16
2024-05-23
HDFS分布式文件系统
HDFS是大数据的核心组件之一,Hive的数据存储在HDFS中,Mapreduce和Spark的计算数据也存储在HDFS中,HBase的region也在HDFS中。在HDFS shell客户端,我们可以进行上传、删除等多种操作,并管理文件系统。熟练使用HDFS有助于更好地理解和掌握大数据技术。实验的主要目的是掌握HDFS的常用操作和文件系统管理。
算法与数据结构
10
2024-07-12
Memcached分布式缓存系统详解
《Memcached权威指南》是一本深入探讨分布式缓存系统Memcached的重要参考资料。Memcached作为高性能、分布式内存对象缓存系统,被广泛应用于网站和应用程序中,以降低数据库负载、提升数据访问速度。本书介绍了Memcached的基本概念,工作原理包括数据存储和LRU替换策略,安装与配置涵盖多种操作系统,客户端库支持多种编程语言,性能优化如缓存大小调整、数据压缩和并发处理,以及分布式策略和高可用性解决方案。应用实例涵盖电商网站、社交媒体和博客系统等多个领域。挑战与解决方案部分讨论了数据一致性等问题。
Redis
9
2024-08-18
Kafka 分布式消息系统的全面解析
Kafka,这个由LinkedIn开源并随后转入Apache基金会管理的项目,已经成为大数据领域中不可或缺的一部分。标题中的\"kafka_2.11-1.0.0.tar.gz\"表明这是一个针对Scala 2.11版本的Kafka发行版,版本号为1.0.0。Kafka作为一个高效、可扩展且持久化的分布式流处理平台,其设计目标是支持实时的数据处理,使得数据能够被快速地生产、存储和消费。 Kafka核心概念包括主题(Topic)、分区(Partition)、副本(Replica)、生产者(Producer)、消费者(Consumer),它们构成了Kafka架构的基础。Kafka具有高吞吐量、持久化
Hadoop
8
2024-08-11
分布式系统概念与设计
这本书详细解释了大数据的概念和分布式系统的设计原理,是初学者学习Hadoop和分布式学习的首选读物。
算法与数据结构
13
2024-07-18
分布式缓存系统安装指南
Memcached安装步骤与注意事项Memcached是一款高性能的分布式内存对象缓存系统,用于减轻数据库负担,通过缓存数据库查询结果和其他可缓存的数据来加速动态Web应用。以下是安装Memcached的具体步骤: 1. 创建安装目录:首先在D盘下创建一个名为memcached的文件夹。 2. 解压安装包:进入memcached文件夹,将下载好的Memcached安装包解压至该文件夹内。 3. 执行安装命令:打开命令提示符(cmd),切换到.exe文件所在的目录,执行memcached.exe -d install进行安装。 4. 验证服务安装:安装完成后,可以通过“服务”管理工具检查是否出现
MongoDB
12
2024-08-25
Redis分布式锁
Redis实现分布式锁
Redis分布式锁是通过设置键值对来实现锁机制,锁的获取和释放都通过原子操作完成,保证了并发环境下锁的安全性。
联锁
联锁是同时获取多个锁,以确保操作的原子性。
秒杀商品测试
秒杀商品场景中,通过分布式锁可以控制并发访问,防止商品超卖。
多线程并发测试
多线程并发测试可以模拟高并发场景,验证分布式锁的性能和稳定性。
Redission锁测试
Redission是一个Java分布式锁框架,提供了基于Redis的分布式锁实现。
Redis
19
2024-05-13
构建稳健的分布式系统.pdf
目前的分布式系统,即使运行良好,也往往非常脆弱:难以维护、难以管理、难以扩展、难以演进、难以编程。在这次讨论中,我试图清理我们对这些系统的思考方式,并探讨几个问题,包括故障模型、高可用性、优雅降级、数据一致性、演进、组合和自治性。这些并非(尚未)可证明的原则,而仅是简化实践中设计的思考方式。它们借鉴了在伯克利和Inktomi建立的大规模系统的经验,包括处理全球50%网页搜索的系统。
算法与数据结构
14
2024-07-14
Hadoop分布式系统的简易管理
在大数据领域,Hadoop作为必要的核心组件,提供了高效可靠的解决方案。将深入探讨如何通过自定义脚本简化Hadoop集群的启动与关闭,以及相关技术细节。Hadoop由Apache软件基金会开发,主要用于大规模数据的存储与处理。其主要组件包括HDFS(Hadoop分布式文件系统)和MapReduce,前者用于数据存储,后者则进行并行处理。此外,Hadoop集群还涵盖HBase(分布式数据库)、Zookeeper(协调服务)和Hive(数据仓库工具)等关键组件。启动Hadoop集群一键化功能涉及环境检查、HDFS格式化、启动DataNodes、NameNodes、YARN资源管理器和节点管理器,以
Hadoop
9
2024-08-02