这些英文书籍是数据分析和数据挖掘领域的入门好帮手,可以帮助您快速了解相关概念。
数据分析和数据挖掘书籍推荐
相关推荐
数据挖掘数据分析资料
共享数据分析学习资料,共同进步。祝学习愉快,万事顺遂!
数据挖掘
22
2024-04-29
数据挖掘入门必读经典书籍推荐
想学习数据挖掘技术的朋友一定要看的一本书,和纸质书内容完全一样,而且文档清晰易读。这本书不仅系统地讲解了数据挖掘的理论和方法,还提供了丰富的实例与应用场景,适合从入门到进阶的学习者阅读。
数据挖掘
9
2024-10-25
Datawhale数据挖掘入门数据分析技巧分享
TASK2: 数据分析来自AI蜗牛车在Datawhale数据挖掘入门教程的部分内容。主要讨论了如何利用Python的数据科学工具进行数据预处理、可视化和探索性分析。使用的工具包括pandas、numpy、scipy、matplotlib和seaborn,这些工具提供了强大的数据分析和可视化能力。文章首先介绍了如何载入数据集,并使用head()和shape属性了解数据的基本结构。接着,通过describe()函数获取数据的统计摘要,帮助读者快速理解数据的分布和异常情况。此外,info()函数用于检查数据类型和缺失值情况,而missingno库则用于可视化缺失数据模式。数据可视化阶段使用matpl
数据挖掘
16
2024-07-22
网络爬虫和数据分析代码优化
优化网络爬虫和数据分析相关的代码以提高效率和准确性。
算法与数据结构
17
2024-07-30
深入理解数据挖掘与数据分析
数据分析是通过适当的统计分析方法对收集到的数据进行分析、概括和总结的过程,目的是提取有用信息支持决策。数据挖掘则通过算法从海量数据中发现隐藏的规律和知识,其目标在于挖掘数据中的重要价值。尽管二者有着明显的区别,但在现代信息技术中密切联系,共同推动着大数据时代的发展。
数据挖掘
11
2024-08-09
数据挖掘入门秘籍快速掌握数据分析技能
在本篇 数据挖掘入门 指南中,我们将带您深入了解数据挖掘的基本概念和核心步骤。数据挖掘 是从大量数据中提取有价值信息的过程,广泛应用于各个行业。通过学习数据挖掘,您将掌握如何分析、清洗、转换数据,最终获得洞察。以下是数据挖掘的主要流程:
数据预处理:确保数据质量,包括数据清洗和数据整合。
数据分析与建模:应用算法找到数据的模式和关系。
结果评估与解读:确保模型效果,并得出有用结论。
应用与优化:将结果应用到实际业务中,不断优化。
通过掌握这些流程,您将更好地理解数据挖掘的核心步骤,并能运用数据挖掘技能为实际问题提供有效的解决方案。
数据挖掘
10
2024-10-30
经典数据挖掘书籍推荐英文版PDF下载
这里推荐几本经典的数据挖掘书籍,都是英文版的高清文字PDF,供您免费下载。
数据挖掘
12
2024-07-14
城市销售数据分析技术探索——数据挖掘实践
探讨了按城市和产品销售数据进行的国际体育用品公司数据分析。使用IBM Visual Warehouse V3.1、Lotus Approach或Microsoft Access以及Intelligent Miner for data/text进行分析。重点在于识别业务需求、分析现有应用程序、采访最终用户,设计能够增加业务价值的OLAP应用程序。
算法与数据结构
15
2024-08-08
数据挖掘技术探索现代数据分析的核心
数据挖掘是一种从海量数据中提取有用信息的过程,涉及技术和算法,揭示数据中的模式、关联和趋势。《数据挖掘:概念与技术》由韩家炜教授及其合作者撰写,深入探讨了数据挖掘的基本原理和最新进展,为读者提供了全面理解。在当今数据爆炸的时代,数据挖掘通过分析和挖掘,将数据转化为洞察和知识,支持企业和个人做出明智决策。零售商可以优化库存和销售策略,医疗机构可以预测疾病趋势和改善医疗服务。
数据挖掘
14
2024-08-31