共享数据分析学习资料,共同进步。祝学习愉快,万事顺遂!
数据挖掘数据分析资料
相关推荐
数据分析和数据挖掘书籍推荐
这些英文书籍是数据分析和数据挖掘领域的入门好帮手,可以帮助您快速了解相关概念。
算法与数据结构
18
2024-04-30
数据数据挖掘与R语言数据分析指南挖掘与R语言数据分析指南
这本《数据挖掘与 R 语言》书籍挺适合对数据有兴趣的朋友。书中的内容了如何使用 R 语言进行数据挖掘,涵盖了多实用的算法和技巧。你会学到如何海量数据,进行数据预、以及可视化。用 R 语言做数据还是挺直观的,书中的案例也蛮详细的,直接跟着做可以快上手。如果你对数据科学、机器学习有兴趣,这本书值得一读。
如果你已经对 R 语言有一定了解,这本书可以你进一步深化对数据挖掘技术的理解和应用。是书中的代码示例,能你更好地理解算法背后的原理。,挺适合入门的,也适合有经验的开发者做进一步提升。
数据挖掘
0
2025-06-17
数据分析课程资料下载
《数据分析就业班》课程资料涵盖了丰富的内容,帮助学员掌握数据分析的核心技能,提升就业竞争力。内容包括数据类型、描述性统计、概率论、统计推断等基础概念,以及Python中Pandas库的数据预处理、Excel的数据整理应用、Scikit-learn库的预测模型构建和数据可视化等内容。案例分析涵盖电商、金融、医疗、社交媒体等多个行业,帮助学员理解不同行业的数据需求和分析方法。此外,资料还包含简历撰写技巧、面试准备策略等就业指南。
算法与数据结构
11
2024-09-14
Datawhale数据挖掘入门数据分析技巧分享
TASK2: 数据分析来自AI蜗牛车在Datawhale数据挖掘入门教程的部分内容。主要讨论了如何利用Python的数据科学工具进行数据预处理、可视化和探索性分析。使用的工具包括pandas、numpy、scipy、matplotlib和seaborn,这些工具提供了强大的数据分析和可视化能力。文章首先介绍了如何载入数据集,并使用head()和shape属性了解数据的基本结构。接着,通过describe()函数获取数据的统计摘要,帮助读者快速理解数据的分布和异常情况。此外,info()函数用于检查数据类型和缺失值情况,而missingno库则用于可视化缺失数据模式。数据可视化阶段使用matpl
数据挖掘
16
2024-07-22
Python数据分析与数据挖掘实战2019.07.22
黑白配色的数据实战教程,内容挺扎实,案例也蛮贴近实际。《Python 数据与数据挖掘实战 20190722.pdf》算是我看过比较系统的资料了,讲了数据的整个流程,还穿插了几个接地气的企业案例。像是沃尔玛啤酒尿布那个经典故事,它也有提到,而且解释得还挺清楚。流程部分比较清晰,从探索性到模型建立再到推断,每一块都有配图和,哪怕你之前没接触过统计也能看懂个七八成。我觉得比较实用的一点,是它结合了多个行业,比如零售、金融甚至动物园,嗯,你没看错,连动物园都在用数据提升客户体验。挺有意思的。另外它还有些延伸资源,像讲PCA 降维的、讲克里格插值的、甚至还有用 Excel 做统计的链接,想深入挖也有地方
数据挖掘
0
2025-06-17
深入理解数据挖掘与数据分析
数据分析是通过适当的统计分析方法对收集到的数据进行分析、概括和总结的过程,目的是提取有用信息支持决策。数据挖掘则通过算法从海量数据中发现隐藏的规律和知识,其目标在于挖掘数据中的重要价值。尽管二者有着明显的区别,但在现代信息技术中密切联系,共同推动着大数据时代的发展。
数据挖掘
11
2024-08-09
数据挖掘入门秘籍快速掌握数据分析技能
在本篇 数据挖掘入门 指南中,我们将带您深入了解数据挖掘的基本概念和核心步骤。数据挖掘 是从大量数据中提取有价值信息的过程,广泛应用于各个行业。通过学习数据挖掘,您将掌握如何分析、清洗、转换数据,最终获得洞察。以下是数据挖掘的主要流程:
数据预处理:确保数据质量,包括数据清洗和数据整合。
数据分析与建模:应用算法找到数据的模式和关系。
结果评估与解读:确保模型效果,并得出有用结论。
应用与优化:将结果应用到实际业务中,不断优化。
通过掌握这些流程,您将更好地理解数据挖掘的核心步骤,并能运用数据挖掘技能为实际问题提供有效的解决方案。
数据挖掘
10
2024-10-30
城市销售数据分析技术探索——数据挖掘实践
探讨了按城市和产品销售数据进行的国际体育用品公司数据分析。使用IBM Visual Warehouse V3.1、Lotus Approach或Microsoft Access以及Intelligent Miner for data/text进行分析。重点在于识别业务需求、分析现有应用程序、采访最终用户,设计能够增加业务价值的OLAP应用程序。
算法与数据结构
15
2024-08-08
Python数据分析与数据挖掘教程之三Pandas数据分析库配套教程文件
Pandas 的配套资源,整理得还蛮全的,适合刚上手数据的你。一共包含了一堆练手文件,搭配教程学起来效率挺高。哦对了,里面也涵盖了不少跟DataFrame和Series打交道的例子,适合边学边改。
python 的数据库里,Pandas确实是最常用的那一个,尤其适合表格数据。不管你是要做财务报表,还是网站日志,read_csv读进来就能玩一波。响应也快,语法也还算直白。
这份教程配套的资源基本覆盖了从数据导入到清洗再到简单可视化的流程。像什么dropna、groupby、pivot_table这些常用操作都有涉及,练完一遍就知道怎么业务数据了。
除了配套文件,推荐几个相关资源一起搭着看:
数据挖掘
0
2025-06-18