spark中不要有hive的jar包,需重新编译,适用于hive2.3、hadoop2.7.6
spark2.0版hive on spark适合hive2.3
相关推荐
Spark2.0与Spark1.3共存安装配置教程
Spark2.0安装教程与Spark1.3共存配置详解
一、引言
随着大数据技术的发展,Apache Spark已成为处理大规模数据集的重要工具。然而,在实际应用中,不同项目可能需要使用不同版本的Spark来满足特定需求。将详细介绍如何在现有Spark1.3的基础上安装并配置Spark2.1.0,实现两个版本的共存,以适应新老项目的需求。
二、环境准备
在开始安装之前,请确保以下条件已满足:1. Java环境:Spark需要Java运行环境支持,推荐版本为1.8或以上。2. Hadoop环境:本教程假设已有Hadoop环境,并且版本不低于2.6。3. 操作系统:Linux操作系统,以Ubunt
spark
8
2024-10-30
Spark取代Hive实现ETL作业
Spark以其优异的性能和灵活性取代Hive,成为实现ETL作业的首选技术。
spark
24
2024-04-30
Hadoop、Hive、Spark 配置修改指南
Hadoop、Hive、Spark 配置修改
本指南介绍如何在 Hadoop、Hive 和 Spark 中修改和添加配置信息。
Hadoop 配置
Hadoop 的配置文件位于 $HADOOP_HOME/etc/hadoop 目录下。
一些常用的配置文件包括:
core-site.xml:Hadoop 核心配置
hdfs-site.xml:HDFS 配置
yarn-site.xml:YARN 配置
mapred-site.xml:MapReduce 配置
可以通过修改这些文件中的属性来配置 Hadoop。
Hive 配置
Hive 的配置文件位于 $HIVE_HOME/conf 目录下。
Hadoop
17
2024-05-20
Spark 2.3.1 Hadooop 2.9 无 Hive 版本
此版本 Spark 2.3.1 为无 Hive 版本,使用 Maven 重新编译 Spark 源代码,可用于实现 Hive on Spark 功能。
spark
15
2024-05-13
Hadoop集群Hive和Spark连接驱动
提供Hortonworks Hive ODBC和Microsoft Spark ODBC连接驱动,支持32位和64位系统。
Hive
29
2024-04-29
深入理解Spark-Hive融合技术
在大数据处理领域,Spark和Hive是两个非常重要的工具。Spark以其高效的内存计算和强大的分布式处理能力,成为实时计算的首选;而Hive则通过其SQL接口和数据仓库功能,简化了大数据分析。当这两者融合时,Spark-Hive模块为大数据处理提供了灵活且高效的解决方案。详细探讨了Spark-Hive技术在2.11-2.1.4-SNAPSHOT版本中的关键知识点,包括元数据集成、HQL支持、数据源API的应用以及性能优化和动态分区插入等内容。
spark
12
2024-07-13
基于Spark和Hive的交通智能分析系统
这是一个毕业设计项目,包含经助教老师测试通过的课程设计和项目源码。系统运行稳定,欢迎下载交流。请下载后首先查阅README.md文件。
spark
17
2024-07-13
Spark与Hive的高效数据处理策略
在大数据领域,Spark和Hive是两个关键工具。Spark以其高效的计算性能和强大的数据处理API,成为了大数据处理的首选框架。与此同时,Hive以其SQL接口和对大规模数据仓库的支持,深受数据仓库和ETL工作的青睐。深入探讨了如何利用Spark 2.1的API操作Hive表,并通过源码分析解析其内部机制。文章详细介绍了在Spark中配置Hive的元数据存储位置和配置文件路径的步骤。同时,展示了通过SparkSQL接口读取和写入Hive表的示例,以及底层实现涉及的关键组件。
spark
12
2024-08-08
Spark 2.0 实战精粹
全面解析 Spark 2.0 代码,助力深入学习。获取方式: 链接
spark
17
2024-04-30