Python编程中,通过列表文件读写和NumPy pandas DataFrame的基本操作,进行电影评分数据分析。这些操作包括数据挖掘和操作系统列表处理。
Python数据分析使用NumPy和pandas处理电影评分数据
相关推荐
用户电影评分数据集
该数据集包含用户、电影和电影评分三张表,适用于 Hive 数据分析练习。
Hive
16
2024-06-21
MovieLens电影评分数据集
真实用户的电影评分数据,适合用来做推荐系统训练,也适合练手数据项目。数据集叫movielens.zip,来源靠谱,是MovieLens平台整理的,有 1000 个用户对 1600 多部电影的评分。
评分推荐系统的经典数据里,movielens.zip算是比较小巧易用的。结构也清晰,users.dat、movies.dat、ratings.dat三张表,字段简明,不用费劲去清洗,直接上手。
你要是想搞个小型的推荐模型,比如用Pandas做协同过滤,或者用Flask搭个评分展示页面,这份数据就挺合适。嗯,响应快,训练也不吃资源。
我当时用它配合Spark MLlib跑过 ALS,效果还不错,推荐结
算法与数据结构
0
2025-06-14
IMDB电影评分数据集详解评分数据与应用
IMDB电影评分数据集包含丰富的评分数据、电影详情、用户评分和相关统计信息,是数据科学和电影分析领域的重要资源。研究人员和开发者可以利用该数据集进行电影评分趋势分析、用户偏好研究以及推荐系统开发,帮助用户更好地理解电影评分模式和预测用户评分倾向。
MySQL
9
2024-10-29
Python数据分析基础Numpy、Pandas与Matplotlib详解
Python作为广泛使用的编程语言,在数据分析领域尤为突出。借助强大的库,如Numpy、Pandas和Matplotlib,Python成为数据科学家的首选工具。本资源涵盖Python基础和数据分析的核心内容,适合有一定编程基础的学习者。Python基础部分包括变量、格式化输出、数据类型和控制结构。变量是数据存储的基本单元,Python支持多种数据类型,如列表、元组、集合和字典。格式化输出可通过百分号符号%或f-string实现。此外,还介绍了类型转换函数和控制结构,如循环和条件语句。
统计分析
20
2024-08-31
python数据分析pandas
使用pandas进行Python数据分析是非常有效的。
算法与数据结构
11
2024-07-15
Python数据探索:男女电影影评评分差异
基于MovieLens 100k数据集,研究男女对电影评分的差异性,从而判断哪一方对电影评分的分歧更大。
Hadoop
15
2024-05-13
Python Pandas 数据分析挑战
本项目包含两个可选的数据分析挑战,考验您对 Python Pandas 的理解和应用能力。请从“Pymoli 英雄”和“城市学校分析”中选择一项挑战完成。
项目结构:* 为项目创建一个新的代码仓库,命名为“pandas-challenge”。* 在本地仓库中创建对应挑战名称的文件夹(“HeroesOfPymoli” 或 “PyCitySchools”)。* 在文件夹中创建 Jupyter Notebook 文件,作为分析脚本。* 将所有更改上传至 GitHub 或 GitLab。
挑战选项:1. Pymoli 英雄: 分析游戏玩家数据,例如玩家数量、热门商品、消费趋势等,并提供洞
数据挖掘
16
2024-06-30
电影评分数据集MovieLens.rar的下载
MovieLens数据集包含大量电影评分数据,是研究电影推荐系统和数据分析的重要资源。
算法与数据结构
15
2024-07-13
Python 数据分析利器:Pandas 库简介
Pandas 库作为数据处理工具,为数据分析师提供了一系列便利操作,包括数据类型转换、缺失值处理、描述性统计分析和数据汇总等。其核心操作对象为序列(类似数据集中的列)和数据框(类似表格)。
统计分析
19
2024-05-16