国际权威的学术组织——IEEE国际数据挖掘会议(ICDM)在2006年12月评选出了数据挖掘领域的十大经典算法:C4.5、k-Means、支持向量机(SVM)、Apriori、期望最大化(EM)、PageRank、AdaBoost、k最近邻(kNN)、朴素贝叶斯和分类与回归树(CART)。
数据挖掘领域的顶尖算法精选
相关推荐
数据挖掘领域的经典算法概述
数据挖掘领域中,有几种经典算法被广泛应用,它们在处理大数据和信息提取方面表现突出。
数据挖掘
18
2024-07-13
数据挖掘领域的经典算法排行
数据挖掘领域内具有深远影响的经典算法
数据挖掘
19
2024-07-13
数据挖掘领域的经典算法综述
详细介绍了数据挖掘领域的十大经典算法,包括C4.5、k-Means、SVM、Apriori、EM、PageRank、AdaBoost等。这些算法被广泛应用于数据探索与知识发现,每个算法的概念、特点和应用均有详细阐述。
数据挖掘
7
2024-09-14
数据挖掘领域经典算法详解
数据挖掘是信息技术领域重要分支,专注于从海量数据中提取有价值信息和知识。IEEE International Conference on Data Mining (ICDM)评选的经典算法包括C4.5、k-Means、SVM、Apriori、EM、PageRank、AdaBoost、kNN、Naive Bayes和CART。每种算法在理论研究和实际应用中都具有深远影响。详细解析了这些算法,包括它们的原理、优势和应用场景。
数据挖掘
18
2024-08-19
数据挖掘领域经典算法探析
数据挖掘领域中一些最经典的算法,适合初学者深入了解和掌握。
数据挖掘
10
2024-07-17
数据挖掘领域经典书籍中的算法
详细介绍了数据挖掘领域的多种算法及其智能应用。
数据挖掘
11
2024-09-18
数据挖掘领域的前十大算法
ICDM会议评选出的数据挖掘领域排名前十的算法。包括XindongWu、Vipin Kumar、J. Ross Quinlan等多位著名作者的贡献。
数据挖掘
11
2024-07-17
神经网络数据挖掘算法精选
数据挖掘里的神经网络算法,真的是挖掘模型的老帮手了。像BP 神经网络、RBF 结构这些经典算法,不管你是搞预测还是做分类,用起来都挺顺手的。配合MATLAB来跑一跑,体验还挺丝滑。要是你想快速搞个模式识别,简单卷积神经网络就挺适合,代码量不大,效果也不错。
数据清理、数据选择这些步骤,虽然有点繁琐,但别跳,基础打得稳后面建模才不容易翻车。嗯,如果你刚上手神经网络,不妨先看看那份神经网络课件.zip,概念讲得挺明白。
几个资源我看了一下,像这个神经网络:数据挖掘算法简介,算是把思路梳理得比较清楚了,适合快速入门。还有一份MATLAB 实现合集,直接上手跑,方便调试,适合实战派。卷积这块也有例子:
数据挖掘
0
2025-07-01
精选数据挖掘特征
数据挖掘是大数据入门必读的内容,特别是在特征选择和降维方法方面有着深入讨论。
数据挖掘
13
2024-07-22