本资源包含MOEA-dev-matser.zip全套代码,涵盖NAGAII、NSGAIII、MOEAD-DE、MOEA-DRA、MOEAD-M2M、SPEA2-SDE、GrEA、e-MOEA等多种进化算法,并附带中文注释。提供DTLZ、WFG、ZDT、UF、MOP、MOKP等多套数据集,经过验证可直接运行,生成多种评估指标如IGD值。
多目标进化算法开发资源集
相关推荐
NSGA-II多目标进化算法
多目标优化里头,NSGA-II 算法还挺经典的,属于进化算法中的老大哥级别。它是在老版 NSGA 的基础上做了不少优化,比如非支配排序快了不少,速度快,代码也不臃肿。精英策略的引入也让好个体不容易被淘汰,结果更稳,收敛也更快。
精英策略的引入挺关键,防止了“好苗子”在迭代中被随机干掉的尴尬。举个例子,如果你在做路径规划、多目标调度这类事儿,这点能帮你节省不少调参时间。
拥挤度比较这块也蛮有意思。以前的 NSGA 要手动设置共享半径,麻烦还容易出锅。NSGA-II 直接上密度排序,你不用再关心那些参数细节,个体分布也更均匀,结果看起来就舒服多了。
资源是打包好的NSGA-II.zip,里面代码结
算法与数据结构
0
2025-06-17
多目标进化算法的深入探究
运用反向学习模型的最新多目标进化算法,在优化问题领域取得突破性的进展。
算法与数据结构
17
2024-05-01
多目标进化优化方法综述(2017年)
详细探讨了多目标优化领域的关键内容,涵盖了NSGA2、NSGA3、MOEA等重要方法,介绍它们在解决多目标优化问题中的应用和优势。
Matlab
8
2024-09-26
多目标Jaya算法(MOJaya)基于SPEA2的进化优化算法
MOJaya是一种多目标优化算法,结合了SPEA2和Jaya算法的特点。
Matlab
12
2024-09-26
MOMVO算法多目标多节优化算法的Matlab开发
本提交提供了多目标优化算法(MOA)的多目标版本(MOMVO)的源代码。此算法是Multi-Verse Optimization Algorithm的多目标衍生版本。主要论文由S. Mirjalili、P. Jangir、SZ Mirjalili、S. Saremi和IN Trivedi撰写,专注于使用多节优化算法解决多目标问题。如果您无法访问该论文,请通过电子邮件ali.mirjalili@gmail.com联系我获取副本。所有源代码和更多优化技术详细信息可以在我的个人网站http://www.alimirjalili.com找到。MVO的Matlab源代码可以在这里下载:https://a
Matlab
11
2024-09-26
多模态多目标PSO算法MATLAB开发简介
运行main.m来测试MO_Ring_PSO_SCD。您可以查阅论文'2。 CT Yu、BY Qu和JJ Liang*,“使用环形拓扑解决多模态多目标问题的多目标粒子群优化器”,IEEE进化计算汇刊。 (DOI:10.1109 / TEVC.2017.2754271),以获取有关此算法的更多说明。这篇论文也在“MO_Ring_PSO_SCD.zip”文件中。如果您有任何问题,请联系我(zzuyuecaitong@163.com)。
Matlab
6
2024-09-26
Matlab多目标优化代码处理进化多模态多目标优化中的决策空间不平衡
Matlab多目标优化代码CPDEA版本所有权归刘一平所有。介绍了在进化多模态多目标优化中处理决策空间中收敛和多样性不平衡的问题。研究提出了不平衡距离最小化问题(IDMP)并使用收敛惩罚密度进化算法(CPDEA)。该算法平衡决策空间中的收敛性和多样性。发表于IEEE进化计算汇刊2020年,第24卷第3期,第551-565页。如有疑问,请联系。
Matlab
10
2024-08-03
使用Matlab开发多目标电子对抗算法
Matlab开发的多目标电子对抗算法解决多目标优化问题,特别是在水循环算法方面。该算法通过电子对抗技术,在多个目标之间实现平衡与优化。
Matlab
9
2024-09-14
Java Web 开发资源
整合了工程项目、简历模板、Struts 框架学习资料和 Oracle 数据库相关资源,助力 Java Web 开发学习与实践。
Oracle
9
2024-05-27