一种快速有效的聚类方法,利用Silhouette指标确定偏向参数,结合局部保持投影方法删除数据冗余信息,处理复杂和高维数据。实验表明,该算法优于传统近邻传播算法。
快速近邻传播聚类算法
相关推荐
基于最近邻规则的聚类算法实验
最近邻规则聚类算法的实验要求是编写一个使用欧式距离度量的聚类算法,可以设置阈值。通过在二维特征空间中验证,使用10个样本数据(如:x1 = (0,0),x2 = (3,8),x3 = (2,2),等)。这些实验探索最近邻规则在聚类过程中的应用。
Matlab
17
2024-08-23
进化吸引子传播AP聚类算法自适应优化聚类
进化算法和 AP 聚类的组合,听起来是不是有点黑科技那味儿?这个叫进化吸引子传播 AP 聚类算法的东西,确实挺有意思的。它不是简单叠加两种技术,而是把遗传算法、粒子群优化这类优化手段和Affinity Propagation聚类算法揉在了一起,能有效避免 AP 卡在局部最优的问题,聚得更准,分得更稳。
初始化用的是一组随机种群,每个个体都是个潜在的聚类中心。计算相似度矩阵,再做责任和可用性消息传递,说白了就是“我适不适合当中心”和“我觉得你适不适合当中心”的互相喊话过程。挺像民主投票,但背后逻辑更复杂。
更新适应度后就是进化操作了,经典套路:选择、交叉、变异全上,挺适合你做一些自适应聚类实验。
统计分析
0
2025-06-16
仿射传播聚类算法及自适应优化
仿射传播聚类算法 (Affinity Propagation Clustering, AP) 是一种高效的聚类算法,特别适用于处理大规模数据集和众多类别的情况。
算法原理:
AP算法通过数据点之间传递信息来识别数据中的聚类中心 (exemplars)。每个数据点都向其他数据点发送信息,表明其适合作为聚类中心的程度,并接收来自其他数据点的类似信息。通过迭代传递信息,算法最终确定一组代表性的聚类中心,并将其他数据点分配到相应的聚类中。
挑战与改进:
传统的AP算法在实际应用中面临两个挑战:
偏向参数难以确定: 算法的性能受偏向参数的影响,而最佳参数值难以确定。
震荡问题: 算法可能陷入震荡状态,
算法与数据结构
15
2024-05-20
基于密度树的网格快速聚类算法
该算法将网格原理应用于基于密度树的聚类算法,提高效率,降低I/O开销。
数据挖掘
15
2024-05-20
快速近邻法分类程序的Matlab实现
介绍了快速近邻法分类程序在Matlab中的实现方法。
Matlab
12
2024-08-29
快速入门聚类分析
非统计或数学专业人士也能轻松上手聚类分析!只需三分钟,了解聚类的目的、分类、步骤,助您解决问题,思路清晰,操作简便。
算法与数据结构
12
2024-04-29
基于快速聚类的髙维数据特征选择算法
这篇论文探讨了一种针对高维数据的特征选择算法,该算法利用快速聚类技术提高效率,为数据挖掘领域的学者和实践者提供了有价值的参考。
数据挖掘
14
2024-05-25
快速搜索查找聚类.pdf
该文献介绍了一种名为快速搜索查找的方法,用于高效进行数据聚类。
算法与数据结构
12
2024-07-19
密度峰聚类算法Python代码通过快速搜索和密度峰查找进行聚类
最近在学习密度峰聚类算法,对/DensityPeakCluster的Python代码进行了改进,并打算基于此算法撰写论文。在GitHub上发现了这个项目,下载后加入了中文注释以便今后查阅。我从Alex Rodriguez和Alessandro Laio的论文《Clustering by fast search and find of density peaks》中学习并修复了原始DensityPeakCluster代码中的Bug。
Matlab
9
2024-07-29