针对生物信息网络中的数据挖掘问题,如算法精度低、运行速度慢和内存占用大,提出一种基于关联规则映射的优化算法。该算法利用网络数据集之间的关联映射关系,确定数据集的关联规则,并引入挖掘因子和相对误差以提高算法精度。同时,根据多维子空间中数据集的关联程度进行区分,有效挖掘不同数据集。实验结果显示,优化后的算法在提高挖掘精度、减少内存占用和提升计算速度方面具有显著优势。
基于关联规则映射的生物信息网络多维数据挖掘算法优化
相关推荐
基于关联规则的数据挖掘算法
基于关联规则的数据挖掘算法在毕业设计中具有重要的参考价值,内容清晰且全面。
数据挖掘
13
2024-05-13
多维复杂关联规则挖掘算法AIGEP
AIGEP算法用于挖掘多维复杂关联规则,以处理具有丰富语义的复杂数据。介绍了CAR的概念,并重点阐述了AIGEP算法的主要工作,包括引入CAR模型、设计AIGEP算法和评估AIGEP算法的有效性。
数据挖掘
10
2024-05-30
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
11
2024-05-25
基于Apriori算法的医疗信息系统关联规则挖掘
关联规则挖掘作为数据挖掘的重要内容之一,利用Apriori算法分析病人的症状与疾病数据,揭示其之间的关联规则,探讨其在医疗信息系统中的应用。
数据挖掘
10
2024-07-13
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
12
2024-05-31
数据挖掘中关联规则算法的研究
近年来,随着计算机技术的迅猛发展,信息技术得到了广泛的应用,数据挖掘技术作为一个新兴领域,其算法之一——关联规则算法,尤为活跃。关联规则算法能够有效处理大量数据和信息,通过从数据库中提取繁琐的项集,并建立这些项集之间的关联关系,从而挖掘出有价值的数据信息,满足不同领域的需求。深入研究了数据挖掘中关联规则算法的应用与发展。
数据挖掘
16
2024-09-14
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
21
2024-04-30
研究论文基于关系矩阵的关联规则挖掘算法优化
关联规则挖掘作为数据挖掘领域的重要研究方向,针对经典Apriori算法在频繁扫描事务数据库时效率低下的问题,在现有研究基础上提出了一种改进的基于关系矩阵的关联规则挖掘算法。理论分析和实验结果表明,该算法在效率和实用性上均有显著提升。
数据挖掘
17
2024-07-18
多维关联规则挖掘数据挖掘原理及SPSS-Clementine应用详解
多维关联规则挖掘是根据是否允许同一个维度重复出现,可分为维间的关联规则(不允许同一维度重复出现)和混合维关联规则(允许维度在规则的左右同时出现)。
数据挖掘
12
2024-07-18