学习笔记概述
大数据与机器学习学习笔记.xmind
相关推荐
大数据与机器学习算法
大数据特征与机器学习算法简介,帮助您了解机器学习算法。
算法与数据结构
15
2024-05-25
大数据与机器学习应用实践探索
政务系统的大数据和机器学习应用,真的是越做越有意思了。你看,像城市规划、交通管理这种大项目,用上数据和模型预测,效率直接翻倍。是像重庆那边的做法,手机信令、GPS、各种模型全拉起来跑,做出来的决策系统还挺靠谱的。城市规划里的数据评估用得挺多,像人口分布、土地使用这些,靠人工搞效率太低了。大数据一套下来,既快还精。就像用heatmap快速看人流密度,直观又省事。交通方面也是一大亮点。整合车辆 GPS、公共交通数据这些数据源,不只是看路堵不堵,更能预测接下来会不会堵,提前调整红绿灯配时都不在话下。机器学习这块,主要看三招:数据挖掘、智能决策、自动化服务。像预测模型,用Random Forest或X
Hadoop
0
2025-06-17
Apache Spark - 验证大数据与机器学习管道
档描述了在Spark作业中验证大数据的设计思路和示例代码。
spark
22
2024-07-23
机器学习的部分学习笔记改写
机器学习的一些学习记录
算法与数据结构
18
2024-07-15
PySpark 2.3大数据处理与机器学习教程
PySpark 结合了 Python 和 Apache Spark 的强大功能,真心是大数据和机器学习开发者的福音。作为一个 Python 程序员,你无需学新语言就能享受 Spark 的高效数据和机器学习功能。比如,Spark SQL 让你通过 SQL 语法轻松查询数据,Structured Streaming 让实时数据变得简单。而 MLlib 的算法库,可以你各种机器学习问题——从分类回归到聚类降维,样样不落。要是你提升自己在大数据领域的技能,PySpark 绝对是个不错的选择。
spark
0
2025-06-15
吴恩达机器学习与深度学习:学习笔记与代码实现
本仓库包含吴恩达机器学习与深度学习课程的学习笔记和代码实现。课程笔记涵盖机器学习和深度学习的核心概念,代码部分则使用MATLAB实现了课程中涉及的基础算法。
关于课程编程作业:
强烈建议注册 Coursera 上对应的课程以完成编程作业。课程作业能够帮助你更好地理解和应用所学知识。
关于代码实现:
本仓库中的代码主要使用 MATLAB 编写,帮助学习者理解算法的底层实现。
Matlab
14
2024-05-30
斯坦福机器学习笔记
斯坦福的机器学习笔记视频提供了深入的学习资源,涵盖了机器学习领域的关键概念和实际应用。学员可以通过这些视频课程深入了解机器学习算法和技术的最新发展。
算法与数据结构
8
2024-08-09
Apache Mahout开源大数据机器学习库
Apache Mahout 是一个由 Apache 软件基金会开发和维护的开源机器学习库,专注于大规模机器学习应用。Mahout 通过提供协作过滤、聚类分析和分类等算法,帮助开发者在超大数据集上进行机器学习操作,尤其是在单机难以应对的数据量情况下。
Mahout的核心算法
推荐系统(Recommender Systems)推荐系统帮助构建推荐引擎,通过分析用户行为和偏好,预测用户可能感兴趣的内容。通常通过协作过滤技术实现,例如在电商、视频流媒体和社交平台中使用。
聚类分析(Clustering)聚类是一种无监督学习方法,将数据集分为多个类或簇。聚类分析在市场细分、社交网络分析和图像分割
数据挖掘
10
2024-10-25
TalkingData大数据分析与机器学习的应用
摘要:TalkingData目前专注于应用统计分析、游戏运营分析、移动广告监测、移动数据DMP平台及行业数据分析等领域。随着业务的快速扩展,数据规模不断增长,带来了挑战。将简要介绍我们在应对这些挑战过程中的经验。成立于2011年的TalkingData,提供企业级移动数据分析和挖掘解决方案,逐步增强机器学习的应用能力。作为新兴企业,尽管资源有限,我们通过创新应对大数据和计算能力的需求。
统计分析
15
2024-07-17