利用语言模型结合Boruta算法预测NBA常规赛前16强,预测准确率达到14/16。文章详细介绍了模型建立过程及算法评估。
利用语言模型预测NBA常规赛前16强
相关推荐
利用R语言进行NBA数据挖掘实战
以NBA篮球数据为案例,详细介绍如何利用R语言进行数据挖掘和分析。内容包括数据获取、清洗、分析和可视化等步骤,适合有一定编程基础的读者学习。
算法与数据结构
15
2024-07-18
RedPajama项目开源领先的大语言模型创建计划
大规模语言模型(LLM)是基于深度学习的自然语言处理模型,能够学习和生成人类可读的文本。这些模型基于神经网络,利用互联网上的大量文本数据进行训练,拥有数十亿到数万亿个参数。整理了国内外公司和科研机构开源的LLM,展示了它们在自然语言生成、文本分类、机器翻译等领域的应用。
算法与数据结构
12
2024-07-18
利用LSTM模型预测未知数据的方法
LSTM模型可用于预测未知的数据,只需将数列中的数值替换为所需的数据。
数据挖掘
15
2024-07-22
Semantic Kernel: 连接 AI 大语言模型与传统编程语言的轻量级 SDK
Semantic Kernel (SK) 是一个轻量级 SDK,允许开发人员将 C# 和 Python 等传统编程语言与大型语言模型 (LLM) AI 相结合。 SK 提供提示模板、链接和规划功能,帮助开发人员创建自然语言提示、生成响应、提取信息、调用其他提示或执行可以用文本表示的其他任务。
SK 的四大优势:
快速集成: SK 可以轻松地嵌入到任何类型的应用程序中,方便开发人员测试和运行 LLM AI。
扩展性: SK 支持连接外部数据源和服务,使应用程序能够将自然语言处理与实时信息结合使用。
更优的提示: SK 的模板化提示使开发人员能够使用抽象和机制快速设计语义函数,从而释放
算法与数据结构
18
2024-05-25
R语言与Bioconductor强强联手,解码基因组奥秘
上篇深入浅出地阐述R语言的精髓,涵盖其独特属性、操作方法、基础数据结构、对象概念、数据分组技巧、数组和矩阵操作、数据列表和数据框的应用、函数包的调用,以及统计分析、图形和可视化的实现。下篇则聚焦Bioconductor, 详细解读DNA微阵列相关技术、数据预处理方法、基因表达差异的显著性分析、基因表达谱的聚类分析和分类识别等关键内容。
统计分析
20
2024-05-19
利用R语言进行高光谱数据预处理、二阶微分及多模型预测
使用R语言进行高光谱数据的预处理、二阶微分操作以及多模型预测。
统计分析
13
2024-09-16
利用 MATLAB 实现模型预测控制系统
本书内容精炼,阐述了利用 MATLAB 实现模型预测控制的方法,并提供了实例代码。
Matlab
9
2024-05-26
利用数据挖掘技术实现分类预测模型
利用数据挖掘技术,我们可以建立分类预测模型,用于对未知数据进行分类测试。这些模型的应用不仅限于测试数据,还可以在实际情境中进行预测。
Hadoop
10
2024-08-29
Oracle实用语言语法详解
Oracle实用语言语法详解
Oracle
12
2024-08-01