JSADM是一项研究项目,专注于利用神经网络和各种数据挖掘算法来进行模式搜索。
乳腺癌计算辅助系统-开源解决方案
相关推荐
乳腺癌肿瘤良恶性预测数据集
该数据集包含用于预测乳腺癌肿瘤良恶性的数据,并已划分为训练集和测试集,可用于训练和评估机器学习模型。
算法与数据结构
8
2024-05-25
Breast Cancer Wisconsin乳腺癌分类数据集
威斯康星医院的乳腺癌数据集,结构清晰、格式干净,拿来练手模型调优挺方便。尤其是搞分类算法的,这数据还挺有代表性,能直接拿来测你的SVM、决策树、神经网络啥的。
文件是压缩包格式,名字叫breast-cancer-wisconsin.names.zip,里面除了.data文件,还有文档,字段都有写清楚,直接喂进模型就行。嗯,列名不多,一眼能看明白。
像你要做恶性良性预测或者模型对比实验,这套数据还挺合适的。比如用sklearn跑个RandomForestClassifier试试看,十几秒就能搞定。
相关资源也不少,像乳腺癌肿瘤良恶性预测数据集、BP 算法和 C4.5 算法对比都能配合着用。做数据
Hadoop
0
2025-06-17
使用预训练模型进行乳腺癌图像分类的MATLAB代码
在乳腺癌检测中,该MATLAB代码利用预训练模型对图像进行分类。需要的前提条件包括Python 2.7和MATLAB(使用LIBSVM)。数据集来自BreakHis,使用VGG-16权重进行处理。方法包括特征提取、数据平衡处理以及使用线性SVM、多项式SVM和随机森林进行分类。
Matlab
24
2024-10-02
pgRouting: 开源路径分析解决方案
pgRouting 是一个强大的开源扩展,为 PostgreSQL 数据库提供了路径分析和导航功能。基于开源架构,pgRouting 能够帮助开发者构建高效、灵活的路径规划解决方案。
PostgreSQL
24
2024-06-11
基于数据挖掘的触诊成像乳腺癌智能诊断模型与方法
乳腺癌智能诊断模型的妙用,说白了就是让机器来帮你分辨肿瘤是良性还是恶性。用了触诊成像结合临床数据,再搭配决策树和投票法,整个流程还挺智能的。哦对,数据少也不用担心,它用SMOTE 算法来补足样本,诊断准确率高达98%,已经能打了。模型的训练数据来自乳腺癌筛查,目标就一个——提高判断效率。比如你把医生的触诊结果喂给它,再丢点患者背景数据,它就能判断良恶性,响应也快。对了,这种方法还挺适合用在小型辅助诊断系统里。要是你对数据挖掘有兴趣,可以看看决策树算法的应用;想深入了解模型背后的算法逻辑,人工神经网络 BP 算法和C4.5的对比蛮有参考价值。甚至你还可以直接下载他们的开源辅助系统或者上手试试乳腺
数据挖掘
0
2025-06-18
Java数据挖掘框架 - 开源解决方案
JDMF是一个采用Java编写的数据挖掘框架,其主要特点包括简单易用、灵活性高以及支持多种算法和输入输出格式,例如XML、CSV、JDBC和Java bean。它能够生成多种输出数据,如XML、纯文本信息和图表。
数据挖掘
17
2024-08-30
Node Interactive Use Scheduler的开源解决方案
Node Interactive Use Scheduler(NIUS)是一个专为科研环境设计的开源软件系统,允许管理员保留计算节点供特定用户群组进行专享的交互式使用。NIUS的核心目标是有效管理和分配资源,尤其在高需求的工作站场景中,如芝加哥伊利诺伊大学国家数据挖掘中心。该系统能够帮助研究人员更高效地利用计算资源,避免资源争夺,从而提高研究效率。NIUS具备高度可定制性和灵活性,社区贡献和维护保证了其稳定性和兼容性,用户可根据需求调整和优化系统。
数据挖掘
18
2024-07-17
基于MySQL的开源数据仓库解决方案
2011数据库技术大会资料显示,爱可生公司的杨涛介绍了基于MySQL的开源数据仓库解决方案。
MySQL
15
2024-07-16
开源数据质量解决方案Apache Griffin.zip
Apache Griffin是一个分布式数据系统中的开源数据质量解决方案。它在Hadoop、Spark、Storm等系统中提供统一的流程,用于定义和检测数据集的质量,并及时报告问题。Apache Griffin填补了大数据质量领域的空白,如同空气质量、水和食品安全对人类生活的重要性一样,数据质量在数据科学领域至关重要。在大数据时代,企业的决策调整和商机发现越来越依赖于数据分析和数据挖掘,数据质量的保证是一切数据分析和挖掘的基础。
数据挖掘
9
2024-08-08