随着大数据分析的需求增长,Hive存储结构的扩展设计与实施变得至关重要。
大数据分析仓库Hive存储结构扩展的设计与实施
相关推荐
大数据分析平台总体架构——数据存储层的设计与实施
在电商大数据实践中,企业内外部的非结构化和半结构化数据被采集并存储,经过结构化处理后,最终得到用于数据模型的结构化数据。数据按照HDFS文件存储,并建议保留1年。平台包括集市区、沙盘区、增值产品区、主题区和归档区,支持批量作业访问。少量高级业务人员利用MapReduce分布式计算进行大数据分析,包括文本检索、语义分词、图像识别和音频识别。与主题区和贴源区形成Hadoop集群(HDFS),保证无单点故障,实现全天候运行。平台还支持历史数据查询和归档,使用Hive提供查询服务。另外,独立的Hadoop集群(HDFS+Hive)同样具备高可用性,保证数据按照归档规则存储,支持历史数据的有效管理。
Hadoop
13
2024-08-09
大数据分析数据导入与存储优化
pandas提供了多种函数,可以高效地将各种表格型数据文件(如CSV、文件)读取为DataFrame对象,其中read_csv和read_table是最常用的。这些函数不仅快速,而且灵活,适用于大规模数据处理和存储优化。
算法与数据结构
12
2024-07-15
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
数据挖掘
12
2024-10-12
大数据分析与挖掘
第一章:数据分析基础理论- 数据分析概述- 大数据分析基础- 大数据预测分析
第二章:计算机数据分析SPSS Modeler- SPSS Modeler概述- SPSS Modeler节点介绍
第三章:计算机数据分析Hadoop- 大数据平台Hadoop
算法与数据结构
18
2024-04-30
大数据分析代码
Scala 实现的大数据分析代码,包括最高在线人数、登录日志分析、付款情况分析等。
spark
15
2024-05-13
商务大数据分析的风险
商务大数据分析过程中可能面临的潜在风险及其归属问题,是关键的考量因素。
Hadoop
19
2024-09-01
基于Spark的大数据分析工具Hive的深入研究
随着大数据技术的进步,基于Spark的数据分析工具Hive在研究领域扮演着越来越重要的角色。
spark
10
2024-07-13
大数据分析体系构建与应用
深入探讨大数据分析体系的构建方法与实际应用。首先,阐述构建高效分析体系的核心要素,包括数据采集、预处理、存储、分析和可视化等环节,并分析各环节的关键技术和工具。其次,结合具体案例,展示大数据分析体系在不同领域的应用,例如商业智能、风险管理和科学研究等,阐明其如何帮助企业和机构洞察数据价值,实现数据驱动的决策优化。最后,展望大数据分析技术的未来发展趋势,探讨其面临的挑战和机遇。
Hadoop
16
2024-06-04
大数据分析与应用技巧总结
第一节、环境设置1.Python是一种面向对象的解释性计算机编程语言2.语言特征:编译性语言、解释性语言(python平台兼容性)、动态语言、静态语言、强类型数据(只能进行类型安全转换的语言)、弱类型数据(一个变量可以分配不同数据类型的值) 3.python环境部署:网址www.python.org选择的最低版本不小于3.5配置完成python3环境后,配置IDE的工具,推荐vscode、pycharm第二节、基础知识学习目标:掌握变量、语句、缩进、注释掌握输入和输出语句掌握编程文件化及执行1.变量命名规则:标识符只能由字母、数字或下划线组成,第一个字符不能是数字,区分大小写
数据挖掘
9
2024-07-13