针对大数据的高维特性及海量性,提出在云计算平台中使用Canopy-Kmeans并行聚类算法。利用三角不等式原理减少计算冗余,显著提升算法执行速度。深入研究了Canopy-Kmeans并行聚类算法,并通过多个不同大小的数据集实验证明,该算法具有良好的加速比、数据伸缩率及扩展性,非常适合于海量数据的挖掘与分析。
云平台上的Canopy-Kmeans并行聚类算法研究
相关推荐
Kmeans聚类算法改进研究.pdf
Kmeans算法在模式识别和数据挖掘等领域应用广泛。针对高维度数据聚类效果差的问题,李森林和蒋启明提出了一种改进方法。
数据挖掘
23
2024-04-30
在Google云平台上的数据科学
《数据科学在Google云平台上》这本英文epub资源是从网络转载而来的。如果有侵权问题,请联系上传者或csdn删除。要查看这本书的详细信息,请在美国亚马逊官网搜索。
spark
10
2024-08-24
使用Python实现Kmeans聚类算法
Kmeans算法是一种经典的无监督学习方法,用于数据聚类。其主要目标是将数据集分成预先指定数量的簇,使得每个簇内的数据点彼此相似,而不同簇之间的数据点差异较大。Python语言因其易读性和丰富的数据分析库,特别适合实现Kmeans算法。借助于scikit-learn库,我们可以方便地创建和应用Kmeans模型。在Python 3.5及以上版本中,可以使用sklearn.cluster.KMeans来实现。首先,导入必要的库:python from sklearn.cluster import KMeans import numpy as np import pandas as pd然后,准备数
算法与数据结构
17
2024-07-18
MATLAB开发高效KMeans聚类算法实现
MATLAB开发:高效KMeans聚类算法实现。这种实现提供了一种快速而有效的图像或阵列的KMeans聚类方法。
Matlab
15
2024-07-13
[聚类算法KMeans]案例客户分群优化
[聚类算法KMeans]案例:客户分群优化详细介绍。在这个案例中,我们将探讨如何利用KMeans聚类算法来更有效地对客户进行分群,以优化营销策略和服务定制。通过分析客户行为和偏好,可以精确地划分不同的客户群体,从而更精准地提供个性化的服务和产品推荐。这种方法不仅提高了市场营销的效率,还加强了客户满意度和忠诚度。
数据挖掘
14
2024-07-16
基于OpenCL的Kmeans算法性能优化研究
Kmeans算法是无监督学习中的经典聚类方法,用于将已知数据集分组和划分,广泛应用于图像处理、数据挖掘及生物学领域。随着数据规模的增大,对Kmeans算法性能提出了更高要求。本研究在考虑不同硬件平台架构差异的基础上,系统研究了Kmeans算法在GPU和APU平台上的优化关键技术,包括片上全局同步高效实现、减少冗余计算、线程任务重映射和局部内存重用等,以实现在不同硬件平台上的高性能和性能移植。实验结果显示,优化后的算法在大规模数据处理方面表现出卓越的性能。
数据挖掘
21
2024-07-25
基于kmeans算法的图像块分类研究
本研究利用Matlab自带函数kmeans对一幅图像进行了8*8图像块的分类分析。
Matlab
9
2024-08-22
大数据分析中聚类算法的并行化研究
探讨了在大数据分析中如何通过将传统聚类算法并行化来提高计算效率的方法。结合MapReduce分布式处理模型,作者对K-means、PAM和CLARA等三种常见算法进行了分布式化实验,并分析了数据规模和节点数量对并行算法性能的影响。实验结果表明,该方法有效地实现了聚类算法的并行化,并适用于分布式系统。
数据挖掘
14
2024-07-15
基于云平台的并行数据挖掘方法探索
近年来,随着技术的进步和数据量的急剧增加,业界已经开始利用云平台处理海量高维数据。将各种异构系统仿真为一个统一的系统,特别是在Hadoop环境中进行数据挖掘时,面临着数据模型的全局性、HDFS文件的随机写操作以及数据生命周期短等挑战。为了解决这些问题,提出了基于Hadoop的高效数据挖掘框架,利用数据库模拟链表结构管理挖掘出的知识。该框架支持树形结构、图模型的分布式计算方法,实现了统计算法如Yscore分箱算法、决策树和KD树的建树算法,并利用Vega云对Hadoop集群进行了仿真。实验结果显示,该框架和算法在实际应用中具有可行性,也具备拓展至数据挖掘以外领域的潜力。
数据挖掘
11
2024-10-13