1960年代,关系数据库的创建者E.F.Codd提出了关系模型,推动了在线事务处理(OLTP)的发展,以表格形式而非文件方式存储数据。1993年,E.F.Codd引入OLAP概念,认为OLTP无法满足终端用户对数据库查询分析的需求。针对大型数据库的简单SQL查询也无法满足用户分析需求。决策者需要大量计算才能得出结果,并非所有查询结果都能满足决策者需求。因此,E.F.Codd提出了多维数据库和多维分析的概念,即OLAP。
OLAP概述-数据仓库与数据挖掘的基本原理及应用
相关推荐
数据仓库中数据变化特性的时间演化分析-数据仓库与数据挖掘的基本原理及应用
数据仓库中的数据时间特性显著不同于操作型数据库。操作型数据库通常保留60~90天的数据,而数据仓库则保留5~10年的数据。操作型数据库包含当前值数据,可随时更新和访问;而数据仓库则存储某一时刻生成的复杂快照数据。此外,数据仓库的键码结构总是包含时间元素,如年、月、日,而操作型数据库的键码结构则可能不包含时间元素。
数据挖掘
16
2024-07-13
数据挖掘的基本原理与算法PDF文档
数据挖掘是从海量数据中发现有价值知识的过程,结合了计算机科学、统计学和机器学习等领域的方法。《数据挖掘的基本原理与算法》PDF文档深入探讨了关联规则、支持向量机(SVM)、决策树等核心概念及其应用,包括数据预处理、数据集成、数据变换、分类与回归、聚类、模型评估与验证以及领域应用等。此文档还讨论了数据挖掘的最新进展和挑战,如深度学习在数据挖掘中的应用和大数据环境下的技术。通过学习档,读者能全面了解数据挖掘的基本原理和实际应用。
数据挖掘
14
2024-07-17
数据仓库与OLAP概述
本课分四章讲解第一章数据仓库与OLAP概述第二章多维数据分析基础与方法第三章数据仓库的构建(示例)第四章数据仓库的高级话题
SQLServer
14
2024-07-27
数据库连接的基本原理与应用
数据库连接是数据库编程中的核心环节,ADO.NET提供了丰富的类和对象用于连接和操作数据库。理解ADO.NET类和对象的基本概述对于数据库编程至关重要。
MySQL
12
2024-09-25
数据仓库与数据挖掘原理及实战应用
数据仓库和数据挖掘的入门书,内容挺全的,适合刚上手或想系统回顾下这块的前端朋友。三大部分讲得蛮清楚:数据仓库怎么设计、建模、搭 OLAP;数据挖掘算法怎么跑、场景怎么落地;还有移动通信行业的案例,实战参考价值比较高。书里对星型模型、雪花模型这些结构有图解,读起来还挺顺;ETL 工具也有,像Talend、Informatica,搭配PowerDesigner建模,直接能上项目。嗯,虽然作者说还没看完,但内容确实比较系统,适合想搭建企业级数仓+系统的朋友。有点数据基础就能啃,强烈建议配合工具边看边练。如果你正好做 BI 前端或数据可视化,建议看看第二部分挖掘算法那块,能帮你更懂后端在搞啥,配合也更
数据挖掘
0
2025-06-17
数据库基本原理及应用——Oracle问题分析
引起的问题: (1)数据冗余:同一门课程由n个学生选修,“学分”就重复n-1次;同一个学生选修了门课程,姓名和年龄就重复了n-1次。 (2)更新异常:若调整了某门课程的学分,数据表中所有行的“学分”值都要更新,否则会出现同一门课程学分不同的情况。 (3)插入异常:假设要开设一门新的课程,暂时还没有人选修。这样,由于还没有“学号”关键字,课程名称和学分也无法记录入数据库。 (4)删除异常:假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。但是,与此同时,课程名称和学分信息也被删除了。很显然,这也会导致插入异常。
Oracle
14
2024-09-25
SAS/EM数据仓库与数据挖掘原理及应用
SAS/EM数据获取工具允许用户通过对话框指定数据集名称及数据挖掘中所需变量。变量主要分为两类:区间变量(Interval Variable),用于统计处理;这些变量在数据输入阶段可设定最大值、最小值、平均值、标准差等统计指标,并检查缺漏值百分比。这些设定可在数据获取初期即进行质量检查,提供数据质量预览。
数据挖掘
14
2024-07-17
算法比较数据仓库与数据挖掘原理及应用
算法工具的横向对比挺少见的,尤其是把数据仓库和数据挖掘主流平台像Clementine、Darwin、Enterprise Miner、Intelligent Miner这些放一块来的。对你要选工具做项目还是了解各家强项,参考价值都挺高。
决策树、神经网络、回归、聚类这些主力算法,在不同平台上支持情况不一样。有的全都有,有的比如PRW,就偏轻量,支持的算法蛮少。你要是正在纠结选哪家工具,不妨看看这个对比表。
顺手给你推荐几篇蛮实用的文章,像 MapReduce 决策树研究 这篇,用大数据场景跑树模型;还有 构建决策树模型,从思路到代码讲得比较清楚,适合入门。如果你是 Python 党,可以直接上
数据挖掘
0
2025-06-14
遗传算法的基本原理及其应用
遗传算法的基本理念源于生物界的遗传过程,通过模拟自然选择和遗传变异来解决复杂的优化问题。由J.Holland于1975年提出,遗传算法适用于多维度、非线性和局部最优解问题的优化。其核心步骤包括编码解决方案、初始化种群、适应度评估、选择操作、交叉和变异过程等。遗传算法具备全局优化能力、自适应性和鲁棒性,广泛应用于机器学习、网络设计、工程优化等领域。
算法与数据结构
10
2024-09-21