在大数据环境下,关联规则挖掘是数据挖掘中的重要技术之一。它基于约束来发现数据中的关联性,包括知识类型约束、数据约束、维/层次约束、规则约束和兴趣度约束等。
大数据环境下的关联规则挖掘方法
相关推荐
关联规则挖掘数据挖掘中的关联规则分析
关联规则挖掘在数据挖掘中有着广泛的应用,最典型的例子就是购物篮。比如,你想知道顾客常常购买哪些商品组合?通过关联规则挖掘,你能出哪些商品常常一起被买,哪些商品的购买时间序列比较稳定。像超市货架设计、库存管理等,都能从这些中受益。通过这些技术,你可以更好地满足顾客需求,提高销售效率。如果你刚开始接触数据挖掘,学习购物篮问题是一个不错的起点。这里有些链接可以进一步你了解相关的技术和案例哦。
数据挖掘
0
2025-06-24
分布式环境下Paillier同态加密的关联规则挖掘
在隐私保护数据挖掘领域,如何在保障数据安全性的前提下,不损失挖掘精度一直是一项挑战。为解决这一问题,我们提出了一种基于Paillier同态加密的关联规则挖掘方法,该方法适用于分布式环境。
方法特点:
计算与解密分离: 采用计算方和解密方分离的策略,有效保障数据挖掘过程的安全性。
精度无损: 利用同态加密特性,在不解密数据的情况下进行计算,确保挖掘精度不受影响。
效率提升: 引入蒙哥马利算法优化Paillier算法,降低计算开销,保证算法效率。
实验结果表明,该方法在引入加解密过程后,整体开销依然处于可接受范围,验证了其在实际应用中的可行性。
数据挖掘
18
2024-05-24
挖掘关联规则的新方法
关联规则挖掘在事务数据库中的应用越来越广泛。单维布尔方法提供了可伸缩的算法,用于挖掘各种关联和相关规则。基于限制的关联挖掘和顺序模式挖掘都是当前研究的重点。
算法与数据结构
13
2024-07-22
概念格关联规则挖掘方法
基于概念格的关联规则挖掘方法,结构清晰、扫描少、效率高,适合动态数据和分布式场景。你要是厌倦了传统的 Apriori 挖掘逻辑,真可以试试这个。构建一次概念格,不仅规则出来得快,后续还挺好维护。关键是,只扫一遍数据库,响应也快,大数据也不吃力,嗯,挺香的!
概念格的数据组织能力还蛮强,不像频繁项集那样靠不断扫描。它是一个偏序结构,像个有层级的树,你的数据逻辑关系全都能“格”出来。尤其是在做市场或者用户行为的时候,效果,规避了多冗余操作。
以前用 Apriori 算法,每次数据库一更新就头大——频繁项集重扫、规则重挖,累不累?现在用概念格挖掘,变动时只需局部维护格结构,不仅稳定,还更可控。而且闭
DB2
0
2025-06-23
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
24
2024-05-25
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
12
2024-05-31
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
16
2024-05-19
关联规则算法数据集关联规则挖掘辅助数据
数据挖掘的老朋友——关联规则算法数据集.xlsx,真是挖关联规则的好帮手。格式干净、字段清晰,导入工具像Pandas或Excel都毫无压力。适合跑Apriori这种经典算法,想练手、做实验、写教程都挺方便的。
Apriori 算法的数据嘛,重点就是事务项集要规整,这个表格已经给你好八成了。你只需要读进去,转换成列表或DataFrame,一键喂给算法跑就行,响应也快,逻辑也直。
如果你正好在做关联规则的入门练习,或者准备课设、Demo,这个文件真挺省事的。数据量不大不小,适合本地跑也适合丢进Colab调试。
我之前在讲Apriori和FP-growth的时候也用过类似格式的数据集,效果还不错。用
算法与数据结构
0
2025-06-16
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
DB2
11
2024-04-30