煤矿企业自动化系统中,文本分类方法的选择是一个关键问题。为了综合评估常用的分类方法的性能,分析了朴素贝叶斯(NB)、决策树(DT)、支持向量机(SVM)这三种方法,并使用开源数据挖掘平台WEKA进行了模拟实验。
利用开源数据挖掘平台WEKA进行文本分类模拟实验
相关推荐
数据挖掘文本分类题目及附件
数据挖掘竞赛题目:文本分类
附件资源:* 训练数据集* 测试数据集* 评分标准
数据挖掘
11
2024-05-15
数据挖掘工具教程使用Weka进行实验
本实验通过选择UCI数据集中的样本进行分析,运用三种不同的分类算法,比较它们的性能表现。实验分为12个组,每组选择一个数据集进行研究。分析过程包括文字和图形解释结果,以及两个性能度量的比较,揭示不同算法在实验中的表现差异。
数据挖掘
9
2024-07-13
分类算法对比Weka数据挖掘实验PPT
分类算法的对比思路挺清晰的,尤其是里面把AdaBoost、Bagging、决策树和规则分类器这几种常见方法都罗列出来,适合刚上手 Weka 的你快速梳理思路。哦,还有一页 PPT 里顺手把J48、ID3、REPTree这些决策树的算法都理了一遍,看一遍印象就挺深了。
数据挖掘
0
2025-06-24
短文本分类与电商品类数据挖掘技术详解
短文本分类器与电商品类数据挖掘
知识点一:短文本分类器
在电商领域,短文本分类用于处理产品标题、评论等短文本信息,将这些文本归类到相应类别。其应用包括:- 产品分类:基于标题或描述自动分类。- 情感分析:判断用户评价的正负面情绪。- 主题识别:识别评论主题,助力商家响应需求。
技术实现包括:- 特征提取:利用TF-IDF等方法提取文本关键特征。- 模型训练:通过机器学习(如朴素贝叶斯、SVM)或深度学习(如CNN、RNN)训练模型。- 评估优化:使用准确率、召回率等指标优化模型性能。
知识点二:电商品类数据挖掘
电商品类数据挖掘从海量商品数据中提取有价值的信息,辅助商业决策。主要步骤包括:-
数据挖掘
9
2024-10-25
数据挖掘在文本分类与生物信息学应用
博士论文探讨了数据挖掘技术在文本分类和生物信息学中的应用。
数据挖掘
13
2024-05-25
NaiveBayes文本分类项目
朴素贝叶斯算法是文本数据时的好帮手,尤其在进行文本分类时挺靠谱的。通过一个概率模型,它能根据文本中的词汇来预测标签。在这个项目中,朴素贝叶斯用来预测 Stack Overflow 上问题的标签。你可以使用它来分类像'Java'、'Python'等问题标签。过程中,数据预关键,需要清洗文本、去掉停用词、做词形还原等。,利用TF-IDF或者词袋模型来表示文本特征。,训练模型,学习不同标签的概率关系。训练好后,拿一个新问题输入,模型就能给出最匹配的标签。,可以用sklearn.naive_bayes来实现朴素贝叶斯算法,验证模型效果时还可以使用交叉验证和一些指标来评估。挺适合用来入门机器学习,了解文
数据挖掘
0
2025-06-24
WEKA数据挖掘平台详解
WEKA作为开放的数据挖掘平台,汇集了多种能够执行数据挖掘任务的机器学习算法,包括数据预处理、分类、回归、聚类、关联规则,并通过新的交互式界面提供可视化功能。如果您希望了解如何实现自己的数据挖掘算法,请参考WEKA的接口文档。在WEKA中集成和借鉴自己的算法甚至实现可视化工具并不是难事。
数据挖掘
11
2024-07-17
weka数据挖掘工具的开源之路
数据挖掘工具Weka是一款开源软件,集成了多种经典算法,为研究人员和数据科学家提供了强大的分析能力。
数据挖掘
9
2024-07-30
Weka: 基于Java的开源机器学习与数据挖掘平台
Weka (怀卡托智能分析环境) 是一款开源的机器学习和数据挖掘软件,基于Java环境开发。它提供数据预处理、关联规则分析等功能,是SPSS Clementine等商业软件的免费替代方案。
算法与数据结构
11
2024-05-31