关联规则挖掘一直是数据挖掘中重要的内容之一。提出了DPCFP-growth算法,它是基于MSApirori算法,并采用了CFP-growth分而治之的策略,以弥补原算法的不足。与CFP-growth算法相比,DPCFP-growth算法有效地将大数据库分解为多个小的子数据库,从而提高了算法的运行效率。实验结果表明,DPCFP-growth算法在大型数据挖掘中具有优越性。
关联规则挖掘的新算法研究
相关推荐
数据挖掘中关联规则算法的研究
近年来,随着计算机技术的迅猛发展,信息技术得到了广泛的应用,数据挖掘技术作为一个新兴领域,其算法之一——关联规则算法,尤为活跃。关联规则算法能够有效处理大量数据和信息,通过从数据库中提取繁琐的项集,并建立这些项集之间的关联关系,从而挖掘出有价值的数据信息,满足不同领域的需求。深入研究了数据挖掘中关联规则算法的应用与发展。
数据挖掘
16
2024-09-14
研究论文基于关系矩阵的关联规则挖掘算法优化
关联规则挖掘作为数据挖掘领域的重要研究方向,针对经典Apriori算法在频繁扫描事务数据库时效率低下的问题,在现有研究基础上提出了一种改进的基于关系矩阵的关联规则挖掘算法。理论分析和实验结果表明,该算法在效率和实用性上均有显著提升。
数据挖掘
17
2024-07-18
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
24
2024-05-25
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
11
2024-05-25
Apriori关联规则算法
Apriori算法是挖掘关联规则的经典算法,效率较高。本算法对Apriori算法进行了改进,提高了效率。
数据挖掘
11
2024-05-25
关联规则挖掘技术的研究进展
综述了关联规则挖掘技术的分类方法、评价方法及其最新进展,特别详细介绍了主要算法,并探讨了未来的发展方向,为进一步研究关联规则挖掘技术提供了全面指导。
数据挖掘
12
2024-08-24
研究论文基于MapReduce的并行关联规则挖掘算法综述
随着数据量的激增,传统算法已无法满足大数据挖掘需求,需要采用分布式并行的关联规则挖掘算法。MapReduce作为一种流行的分布式计算模型,因其简单易用、可扩展性强、自动负载平衡和容错性等优势,得到了广泛应用。对现有基于MapReduce的并行关联规则挖掘算法进行分类和综述,分析其优缺点及适用范围,并展望未来研究方向。
数据挖掘
15
2024-07-16
多维复杂关联规则挖掘算法AIGEP
AIGEP算法用于挖掘多维复杂关联规则,以处理具有丰富语义的复杂数据。介绍了CAR的概念,并重点阐述了AIGEP算法的主要工作,包括引入CAR模型、设计AIGEP算法和评估AIGEP算法的有效性。
数据挖掘
10
2024-05-30
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
16
2024-05-19