研究人员经常利用多个数据集进行可信的计量经济学和统计分析。为确保数据链接的可靠性,他们通常依赖于唯一标识符。然而,这种联系可能会泄露个人的敏感信息,因此数据管理者可能会删除私人数据集中的某些个人信息以保护隐私。数据管理员保留的信息仍然允许研究人员链接数据集,尽管可能会出现一些错误。k-匿名性是一个解决隐私与数据链接之间平衡的概念框架,在实践中有着广泛的应用。从研究人员和数据管理者的角度探讨了数据组合和估计任务,强调了k-匿名性对数据管理和研究的重要性及其影响。
数据隐私与数据效用的平衡关于k-匿名性的权衡说明
相关推荐
混合数据语义保留K-匿名算法MAGE
针对泛化和微聚合在匿名化混合微数据上的缺陷,提出了MAGE算法,该算法结合均值向量和泛化值作为聚类质心,使用TSCKA算法匿名化混合数据。实验结果表明,与Incognito和KACA算法相比,MAGE算法在混合微数据匿名化上更有效。
数据挖掘
11
2024-05-15
基于社区划分的改进k度匿名隐私保护方法
针对传统k度匿名隐私保护方法在图结构中易受结构性背景知识攻击的问题,提出了一种基于社区划分的改进方法。该方法将网络节点分为社区内节点和连接社区的边缘节点两类,并通过不同的匿名化策略实现了社区内节点的度匿名和边缘节点的社区序列匿名,有效提升了整个社交网络的k度匿名保护水平。实验证明,该方法不仅降低了数据实用性损失,还能抵抗基于节点度和节点所在社区关系的背景知识攻击。
数据挖掘
15
2024-09-25
轨迹数据隐私保护的关键技术研究综述
随着轨迹数据应用的增多,保护其隐私变得尤为重要。综述了轨迹数据隐私保护的关键技术,涵盖了基于位置服务网络环境下的隐私保护和基于轨迹数据发布的隐私保护方法。在时空层面,这些技术在数据隐私、位置隐私和轨迹隐私的处理上提供了有效的解决方案。
算法与数据结构
14
2024-07-13
深入k-均值聚类
这篇论文深入探讨了k-均值聚类算法,涵盖了其核心原理、算法步骤以及应用场景。此外,还分析了k-均值算法的优势和局限性,并讨论了如何优化算法性能,例如选择合适的k值和初始聚类中心点。
数据挖掘
14
2024-05-15
k-均值(k-means)算法及其在Matlab中的实现
k-均值(k-means)算法是数据挖掘中常用的一种无监督学习方法,用于将数据点分组或聚类。它通过迭代过程将数据点分配到最近的聚类中心,并更新这些中心为所在簇内所有点的平均值。在Matlab中实现k-均值算法可以方便理解其工作原理,利用Matlab强大的数值计算能力进行高效实现。算法步骤包括:1. 初始化:随机选择k个初始聚类中心。2. 分配:计算数据点到各聚类中心的距离,分配到最近的中心所在簇。3. 更新:更新每个簇的中心为该簇内所有点的平均值。4. 迭代:重复分配和更新步骤,直到收敛或达到最大迭代次数。Matlab中的实现优势在于其简洁的语法和丰富的内置函数,例如pdist2和kmeans
算法与数据结构
10
2024-09-14
基于极大关联属性集分解的高维数据隐私保护方法
在高维数据匿名发布中,传统的抽象化技术易造成信息缺损,导致发布数据在实际应用中的价值下降。而分解技术虽然确保了数据真实性,却因视图划分破坏了属性间的内在关联,进一步限制了数据的可用性。针对这一问题,该文提出了基于极大关联属性集的分解法(MAAD)。MAAD借助频繁模式挖掘技术,寻找具有强关联性的属性组,以此指导多视图分解的生成。通过优先考虑属性间的关联性,MAAD生成的多视图在隐私保护与数据挖掘性能之间实现了平衡。
数据挖掘
8
2024-10-26
基于 K-子空间的聚类算法
K-子空间算法是一种聚类方法,其思路类似于 K-均值算法,都可以将数据划分到不同的簇中。
Matlab
11
2024-05-30
重新定义匿名数据和处理个人数据目的的隐私挑战
探讨了数据保护领域中的两大关键趋势:重新定义匿名数据和为进一步处理个人数据目的的隐私挑战。尽管这些趋势对隐私提出重要挑战,并在法律学说中尚未得到充分重视,但它们仍然在数据保护边缘中起到关键作用,可能引发严重的法律问题。文章详细分析了这些趋势如何影响数据保护框架,并强调了新准则的必要性,以指导数据处理实践。
数据挖掘
13
2024-07-16
关于IBM Informix官方文档的说明
该文件当前状态不完整,建议您暂缓获取。
Informix
23
2024-05-12