Nedim Lipka,Adobe Research系统技术实验室的研究专家,专注于机器学习和数据挖掘。他最近的研究方向包括可扩展的强化学习算法,以及Spark和Hadoop等大数据技术。在最近的峰会上,他深入探讨了利用Spark在数字营销中实现分布式强化学习的创新应用。
Adobe Research专家探索Spark在数字营销中的分布式强化学习应用
相关推荐
强化学习概览
强化学习涉及代理在环境中采取行动并根据其后果获得奖励或惩罚,从而学习最佳行为策略。它主要用于:- 游戏- 机器人控制- 资源管理常用的强化学习算法包括:- Q学习- SARSA- DQN
算法与数据结构
18
2024-05-13
Spark分布式计算框架
Spark是一种高效的开源集群计算系统,专为大规模数据处理而设计。它提供了一个快速灵活的引擎,用于处理批处理、交互式查询、机器学习和流式计算等多种工作负载。
Spark核心特性:
速度: Spark基于内存计算模型,相比传统的基于磁盘的计算引擎(如Hadoop MapReduce),速度提升可达100倍。
易用性: Spark提供简洁易用的API,支持多种编程语言,包括Scala、Java、Python和R。
通用性: Spark支持批处理、交互式查询、机器学习和流式计算等多种工作负载,提供了一个统一的平台来处理各种大数据需求。
可扩展性: Spark可以在数千个节点的集群上运行,能够处理P
spark
11
2024-06-22
强化学习在机器学习中的重要性
这份PPT是我学习制作的,但由于我的水平有限,可能还有不完善的地方,希望能够通过更多交流改进。转载时请注明出处,谢谢!
算法与数据结构
25
2024-07-19
ADMM在分布式优化与统计学习中的深度应用
ADMM在分布式优化与统计学习中的应用
引言
ADMM(交替方向乘子法)作为一种有效的分布式优化算法,在近年来得到了广泛的应用和发展。主要基于斯坦福大学教授Stephen Boyd等人于2010年发表的一篇综述文章进行深入探讨。该文详细阐述了ADMM的基本原理及其在机器学习领域的应用,并对ADMM与其他优化方法进行了对比分析。
ADMM的背景与发展历程
ADMM的起源可以追溯到20世纪70年代末期,最初是由Gabay和Mercier提出的一种用于求解约束优化问题的方法。其发展历程中,几种早期相关技术为ADMM的演变奠定了基础:1. 对偶上升法2. 对偶分解法3. 增广拉格朗日法与乘子法
ADM
算法与数据结构
17
2024-11-04
Spark分布式计算模拟代码
Driver作为客户端,Executor作为服务器
1个Task任务类,1个SubTask分布式任务类
2个Executor启动后连接Driver,分配任务资源
spark
9
2024-05-13
Spark 分布式计算框架指南
本指南涵盖 Apache Spark 核心模块、SQL 处理、流式计算、图计算以及性能调优与内核解析等方面。内容面向希望学习和应用 Spark 进行大数据处理的用户,提供从入门到实战的全面指导。
主要内容包括:
Spark 核心概念与编程模型: 介绍 Spark 的基本架构、RDD、算子以及常用 API。
Spark SQL 数据处理: 讲解 Spark SQL 的数据抽象、查询优化以及与 Hive 的集成。
Spark Streaming 实时流处理: 探讨 Spark Streaming 的架构、DStream API 以及状态管理。
Spark GraphX 图计算: 介绍 Spa
spark
9
2024-05-29
分布式数据仓库在企业中的应用
与完全独立的数据仓库模式不同,大多数企业内部的部门之间存在一定程度的集成。很少有企业像图6-20所示那样完全自主运作。更常见的是,多个数据仓库项目以图6-21所示的形式开发。
逻辑上属于同一个数据仓库
在图6-21中,一家公司在世界各地设有不同的分支机构(站点),例如美国、加拿大、南美、远东和非洲等地。每个分支机构都拥有自己特有的数据,机构之间不存在数据重叠,特别是对于详细的事务数据。
当第一个体系结构环境建立后,公司期望为每个分公司创建一个数据仓库。不同分支机构之间存在一定程度的业务集成,同时也假定在不同的区域,业务运作具有当地特色。这种企业组织模式在许多公司中很常见。
许多企业在构建数据仓
DB2
19
2024-05-12
SpringBoot应用中的分布式事务优化演示.zip
在这个演示中,我们针对SpringBoot应用中的分布式事务进行了优化。由于在本次演示中频繁切换动态数据源过于复杂,我们将其改为静态多数据源的配置。这样一来,使用时无需再担心数据源切换问题。
MySQL
23
2024-09-26
使用Matlab进行强化学习在算法交易中的应用 Marco Decision Code
Python 3.6.5用于入门强化学习在算法交易的马尔科夫决策Matlab源码。建议创建虚拟环境以避免依赖问题。您可以使用Virtualenv在当前的Python解释器中创建虚拟环境。当前依赖关系列在requirements-cpu.txt或其GPU等效文件中,可以使用以下命令进行安装: pip3 install virtualenv python3 -m virtualenv source env/bin/activate pip install -r requirements-cpu.txt GPU支持的等效要求在requirements-gpu.txt中。我们正在优化两种资产之间的资金
Matlab
7
2024-07-27