随着数据仓库技术的发展,元数据在数据仓库中的重要性日益凸显。元数据不仅定义了数据仓库的功能,指示了信息的内容和位置,描述了数据的提取和转换规则,还管理了数据仓库的主题及相关信息。它不仅实现了数据仓库的管理功能,如数据的修改和跟踪,描述数据同步需求,评估数据质量等,也作为管理数据和知识的基本元素。元数据将成为数据生产、存储、更新和再利用的趋势。尽管数据仓库元数据研究受到广泛关注,但尚未建立成熟的理论体系或明确的定义。建立统一的数据仓库元数据模型和管理规范,是该领域亟需解决的问题。通过研究现有的多维表元数据建模方法和ERP建模体系,确立了基于ERP建模体系的数据仓库多维表元数据建模方法。应用面向对象程序设计工具和关系数据库工具,研究了数据仓库元数据的实现和管理。通过定义指标实体、维度实体、详细类实体和关系实体,引入动态数组技术,以及解决实体结构动态修改问题的属性分离算法,深入研究了关联规则挖掘过程中元数据的重要作用。
数据挖掘中的元数据管理及集成研究
相关推荐
数据管理中的元数据作用分析
在任何数据管理方案中,元数据都是至关重要的一部分。面对存储和管理外部及非结构化数据时,元数据的角色显得尤为关键。图示元数据在数据仓库环境中对外部数据的注册、访问与控制起着重要作用。元数据包括文件标识符、进入仓库日期、文件描述、来源日期、分类、索引字、清理日期、物理地址引用、文件长度及相关参考等内容,通过这些元数据管理者能够获取关键的外部数据信息。
DB2
17
2024-07-13
元数据管理入门
元数据是描述数据仓库的信息,充当数据仓库的“语言”。它使分析引擎了解数据仓库的结构和对象。通过元数据,系统独立运作,通过元数据桥梁进行沟通。BI@Report 的元数据包括:- 主题表描述- 维表描述- 度量和维度描述- 报表定义- 查询定义- 门户- 权限信息
算法与数据结构
17
2024-04-30
高光谱数据管理系统及其数据挖掘研究
针对高光谱数据的特性,设计了一个有效的光谱数据库管理系统,实现了高光谱数据的存储、管理和检索功能。同时,分析了多种常见的光谱匹配技术,探讨了它们的特点,并引入并验证了一种新的光谱匹配技术的发展。
数据挖掘
11
2024-07-16
Apache Atlas元数据管理详解
Apache Atlas是Hadoop社区开源的元数据治理项目,解决Hadoop生态系统中的元数据管理挑战。它为Hadoop集群提供数据分类、策略引擎、数据血缘追踪、安全和生命周期管理等核心能力,帮助企业构建数据资产目录并进行有效管理。Apache Atlas与Apache Ranger整合,用于数据权限控制策略,为企业数据湖提供完整的合规性和集成性解决方案。
Hadoop
20
2024-08-21
业务元数据驱动的企业数据管理
业务元数据是未来元数据管理的关键。在数据爆炸式增长的今天,企业需要加强对业务元数据的管理。基于本体和自动化技术,企业可以有效管理和利用业务元数据,并将其以服务的形式提供给业务人员,从而提高数据的使用效率。
Hadoop
11
2024-06-30
高校教育中的数据挖掘技术应用及研究
高校教育中的数据挖掘技术应用及研究,是一个日益重要的领域,利用海量教育数据挖掘潜在价值,提升教学质量,优化资源分配,促进学生发展。数据挖掘是从大量数据中发现未知知识的过程,融合了数据库技术、统计学、机器学习等多学科精华。在高校教育中,该技术可用于教学评价、学生行为分析、课程设计优化等方面。通过聚类分析和近邻技术,实现个性化教学和提前干预。决策树和规则归纳揭示了教育决策因素和学生行为成绩关系,支持教育政策制定。人工神经网络模拟学习过程,预测学生进度和困难,提供早期干预依据。数据挖掘技术在高校教育的应用前景广阔,为教育管理和实践提供科学决策支持。
数据挖掘
15
2024-09-25
客户管理中的数据挖掘技术应用研究
数据挖掘技术是从大量、无序、静态的数据中发现有价值规律和模式的过程。在分析了数据挖掘技术的应用特点后,探讨了客户管理的独特需求。讨论了算法选择、模型构建、工具应用等关键环节,提出了在客户管理中应用数据挖掘技术的实用方案。最后进行了简要的效果评价与分析,对类似应用具有参考价值。
数据挖掘
12
2024-10-20
数据挖掘技术综述-数据管理类
1.4 数据挖掘技术综述。1.4.1 数据挖掘的发展受益于超大规模数据库的出现、先进的计算机技术以及经营管理实践中对数据深度分析需求的增加。
Oracle
8
2024-08-26
Weka数据挖掘工具中FuzzyCMeans算法的集成
为扩展Weka数据挖掘工具的聚类分析功能,介绍了集成FuzzyCMeans算法的步骤。首先,获取FuzzyCMeans.java文件并将其置于weka.clusterers包中。在修改错误代码后,需更新weka.gui.GenericObjectEditor.props文件以注册新的算法。具体而言,在“#Lists the Clusterers I want to choose from”部分的“weka.clusterers.Clusterer=”行添加“weka.clusterers.FuzzyCMeans”。完成代码编译后,FuzzyCMeans算法将出现在Weka Explorer界面
数据挖掘
14
2024-05-29