设备能力调查涵盖了至少50件普通情况和至少20件特殊情况下的数量调查,每组选择3至5只样本,总共选取25组,确保总数量达到125个。特殊情况下,至少6组样本,总量不少于30个。调查方法采用连续加工并按加工次序编号,定期间隔分组抽样,每组样本数量一致。在设备操作上,不更换刀具且无刀具调整,不计算设备自动补偿;在热机状态和批量生产条件下,至少进行一次刀具更换和设备参数调整。操作人员为同一操作工,班次和操作工每次更换3次。原料选择单一批次毛坯,至少更换一次批次以确保数据的多样性。
SPC过程统计分析设备能力调查及其数量特性研究
相关推荐
SPC 过程统计分析发现过程能力不足
零件和材料不稳定、设计不合理、供应商和生产部门存在问题。
统计分析
14
2024-04-30
极差=SPC过程统计分析步骤
极差=34;
分为10组;
控制上线=164.5;
中央线=158.5;
控制下线=152.5。
数据分布在8个区中,其中34个数据在区6中。
统计分析
15
2024-05-01
SPC生产过程统计分析
SPC 的生产过程统计工具,用起来还挺顺手的。它不是那种一上来就给你堆一堆公式的工具,而是把流程拆得细,比如从原料、人机法环这些关键要素入手,每一步都能追踪数据,异常趋势一目了然。
操作方式也比较直观,数据录入和图表呈现都挺清爽的,不复杂。你只要把关键控制点的测量数据录进去,系统自动就能给你画出趋势图,像X-Bar 图、R 图这些都有。嗯,响应也快,适合现场快速决策。
还支持过程能力,像你要看 Cp、Cpk 这些值,直接点几下就出来了。适合用在你做首件、巡检或者交付前的最终检验上。想追根溯源时,看个控制图就能知道问题是偶发还是系统性的。
如果你对 SPC 还不是熟,可以顺便看看下面这几篇文章:
统计分析
0
2025-06-17
不规则型-SPC过程统计分析
在不规则型情况下,图形表现为不规则状态或是几种不同状态的混合体。SPC过程统计分析用于分析这些不规则型的变化,帮助识别数据中的潜在问题和趋势。
统计分析
13
2024-11-06
统计稳定状态SPC过程能力分析
统计过程控制里的统计稳定状态,讲白了就是过程有没有跑偏。只要图上没有“出圈”的点,就算是统计稳定状态,靠的是控制图的判异准则来判断。技术稳定状态呢,更贴近业务和客户需求,要看Cp、Cpk这些指标,才知道你这工艺靠不靠谱。这块我还挺推荐几个文章的,像单边控制图 SPC 过程能力,讲得比较细。还有R 控制图,用起来简单直观,适合初学者上手。过程监控方面,用控制图监控过程也还不错,图例清楚,能快速定位异常。不过要注意,统计稳定≠技术稳定,别混着用了。一个过程就算数据稳定,也根本不达标。如果你做品质控制或制程,蛮建议把SPC和过程能力一起看,搭配用更靠谱。
统计分析
0
2025-06-17
SPC过程统计分析历史背景
SPC 过程统计的资源还蛮全的,尤其适合刚上手质量控制的前端或者测试同学。历史背景讲得比较清楚,为什么会有 SPC、它了什么问题、和传统质量检验的区别这些,都有展开。内容虽偏向制造业,但概念挺通用,做数据监控和异常检测也能用得上。再说了,谁不想提前发现问题、少踩点坑?
统计分析
0
2025-06-14
t值统计分析的SPC过程分析
t值是数据中出现次数最多的数值。2. t值不受极值的影响。3. t值可能存在没有众数或多个众数的情况。4. t值适用于计量数据和计数型数据。
统计分析
13
2024-07-17
顾客满意的SPC过程统计分析
顾客满意是企业避免缺陷质量特性的重要方面。通过SPC(统计过程控制)分析,企业可以有效监控和改进产品质量,从而提升顾客满意度。SPC技术帮助企业实时识别潜在问题并采取适当措施,确保产品符合顾客期望,提高市场竞争力。
统计分析
17
2024-07-13
SPC过程统计分析的关键注意点
在应用SPC过程统计分析时,需关注以下几点:数据量的多少、是否存在假数据、与计量值中其他管制图结合使用分析、如数据过少,则将CPK或PPK和直方图放在一起来分析、特别注意类似管制界限与规格界限的位置及相互关系、当出现单边规格时,分布可能不理想,但有时可以接受。
统计分析
11
2024-07-14