云计算技术作为海量数据挖掘的高效解决方案,结合MapReduce并行计算模型与粗糙集属性约简算法,提出了一种基于MapReduce的浓缩布尔矩阵并行属性约简算法。该算法显著提升了粗糙集属性约简在大数据处理中的效率,适应了云计算环境。实验验证显示,该算法具备出色的效率、加速比和可扩展性。
基于云计算的浓缩布尔矩阵并行属性约简算法研究(2015年)
相关推荐
基于云计算的Web图数据挖掘算法研究
基于云计算环境的 web 数据挖掘算法,挺适合你这种对图算法有点研究、还想跑得快的场景。Web Graph 的数据结构用起来比较直观,尤其是在社交网络那种用户关系链复杂的时候,配合力导向算法,图形一出来,关系一目了然,调试也方便。
Web Graph 的数据结构设计得还不错,适合做用户关系,尤其是社交网站的用户数据。力导向算法表现图结构形象,关系链看得清,节点的权重变化也能一眼看出。响应也快,代码也不复杂。
用云计算环境跑图数据挖掘是个加速器,论文里直接用了分布式算法跑 Graph 直径计算,效率提升蛮的。是部署在集群上,分布式并行,资源利用率也高。
部署方案上也有参考价值,比如在 Hadoo
数据挖掘
0
2025-06-17
基于Clementine的电脑状态监测研究 (2015年)
在数据挖掘领域,神经网络和C5.0算法被广泛应用于构建监测和预测模型。本研究利用基于Clementine环境的神经网络和C5.0规则模型,分析并预测电脑状态信息及相关故障状态。通过实测数据验证,神经网络模型预测准确率达99.64%,C5.0模型更高达99.68%,且两者预测结果一致性高达99.81%。研究结果显示,C5.0模型在预测精度上优于神经网络模型。
数据挖掘
11
2024-09-18
基于粗糙集的属性约简在数据挖掘中的研究
粗糙集的属性约简在数据挖掘中挺有用的,尤其是在一些不完全、冗余的数据时。它从数据中提取出最精简的属性集,同时又不会损失分类能力。你可以把它想象成给数据“瘦身”,让它变得更高效。在实际操作中,粗糙集理论通过简化数据的结构,能够提高数据挖掘的精度和速度。嗯,最关键的是,它不需要额外的先验信息,这就让算法更灵活。如果你正在做与数据相关的项目,粗糙集的属性约简可以大大简化你的工作,是在分类问题上,能你更好地去除不必要的特征。
数据挖掘
0
2025-06-11
优化研究基于云计算与医疗大数据的Apriori算法
对现有医疗数据挖掘技术中的关联规则算法进行分析与研究。在经典的Apriori算法基础上,引入了兴趣度阈值来优化算法,以提高算法在医疗大数据环境下的性能。具体研究了如何通过云计算平台实现对大规模医疗数据的高效处理,并探讨了优化后的Apriori算法在医疗数据挖掘中的应用效果。
数据挖掘
8
2024-11-06
SOIS中基于信息熵的属性约简
粗糙集理论用于SOIS中属性约简。通过信息论视角,引入信息熵和相对信息量。基于信息熵定义属性约简,并提出减价算法。示例说明方法有效性。
数据挖掘
15
2024-05-26
PDMiner基于云计算的并行分布式数据挖掘平台
PDMiner 的并行分布式挖掘能力真的挺强,适合那种动辄 TB 级的大数据场景。平台是基于 Hadoop 打造的,利用了 HDFS 和 MapReduce,性能稳定,扩展性也不错,跑起大型任务来带劲。如果你之前被串行算法拖慢过节奏,PDMiner 这种并行方案就挺值得一试。
PDMiner 的并行机制真的是大数据瓶颈的一把好手。数据预、分类、聚类、关联规则,全都能并行搞定。后台用的是Hadoop,性能可不是闹着玩的。多节点并发执行,资源利用效率高,响应也快。
平台还整合了工作流子系统,交互界面挺友好,配置任务顺手,哪怕不是技术出身的同事也能用得上。拖拖拽拽就能设定流程,省心省力。嗯,对于习惯
数据挖掘
0
2025-06-13
基于模糊并行约简的模糊概念漂移探测方法
数据流挖掘作为热门研究领域,涵盖多种数据流类型。本研究借鉴模糊粗糙集和F-粗糙集原理,提出一种针对模糊型数据流的模糊并行约简方法。该方法通过删除冗余属性,利用属性重要性变化探测模糊概念漂移现象。区别于传统方法,该方法基于模糊数据内在特性进行漂移探测,并通过实例验证了其可行性和有效性。
数据挖掘
20
2024-05-15
基于迭代局部搜索和粗糙集的新属性约简算法探讨
介绍了两种基于迭代局部搜索和粗糙集理论的新型属性约简算法。这两种算法均以相对约简的贪婪策略作为起点,并采用不同的属性选择方式。第一种算法采用随机选择策略,而第二种算法则通过复杂的选择程序进行优化。另外,第一种算法设定了固定的迭代次数,而第二种算法则在达到局部最优解时停止迭代。通过对来自UCI的八个著名数据集进行的实验验证,展示了这些算法在属性约简中的显著优势。
Matlab
12
2024-07-21
基于启发式算法的属性约简在数据挖掘中的应用
基于粗糙集理论,探讨了属性约简在数据挖掘中的重要性和应用。通过引入启发式算法,详细分析了其在优化数据挖掘过程中的有效性,并结合实例展示了算法的实际效果。技术进步使得这些算法在处理复杂数据集时显得尤为重要。
数据挖掘
8
2024-08-03